论文标题

虚拟通信:人类作为极端视图几何形状的提示

Virtual Correspondence: Humans as a Cue for Extreme-View Geometry

论文作者

Ma, Wei-Chiu, Yang, Anqi Joyce, Wang, Shenlong, Urtasun, Raquel, Torralba, Antonio

论文摘要

从极端视图图像中恢复相机的空间布局和场景的几何形状是计算机视觉的长期挑战。盛行的3D重建算法通常采用匹配范式的图像,并假定场景的一部分在图像之间是可辨认的,当输入之间几乎没有重叠时,效果较差。相比之下,人类可以通过形状的先验知识将一个图像中的可见部分与另一个图像中相应的不可见组件相关联。受这个事实的启发,我们提出了一个名为虚拟通信(VC)的新颖概念。 VC是来自两个图像的一对像素,它们的相机射线在3D中相交。与经典的对应关系相似,VC符合外侧几何形状。与经典的信件不同,VC不需要在视图中可以共同提供。因此,即使图像不重叠,也可以建立和利用VC。我们介绍了一种方法,可以在场景中找到基于人类的虚拟通信。我们展示了如何与经典捆绑捆绑调整无缝集成的风险投资,以在极端视图中恢复相机姿势。实验表明,在具有挑战性的情况下,我们的方法显着优于最先进的相机姿势估计方法,并且在传统的密集捕获的设置中是可比的。我们的方法还释放了多个下游任务的潜力,例如在极端视图场景中从多视图立体声和新型视图合成中进行的场景重建。

Recovering the spatial layout of the cameras and the geometry of the scene from extreme-view images is a longstanding challenge in computer vision. Prevailing 3D reconstruction algorithms often adopt the image matching paradigm and presume that a portion of the scene is co-visible across images, yielding poor performance when there is little overlap among inputs. In contrast, humans can associate visible parts in one image to the corresponding invisible components in another image via prior knowledge of the shapes. Inspired by this fact, we present a novel concept called virtual correspondences (VCs). VCs are a pair of pixels from two images whose camera rays intersect in 3D. Similar to classic correspondences, VCs conform with epipolar geometry; unlike classic correspondences, VCs do not need to be co-visible across views. Therefore VCs can be established and exploited even if images do not overlap. We introduce a method to find virtual correspondences based on humans in the scene. We showcase how VCs can be seamlessly integrated with classic bundle adjustment to recover camera poses across extreme views. Experiments show that our method significantly outperforms state-of-the-art camera pose estimation methods in challenging scenarios and is comparable in the traditional densely captured setup. Our approach also unleashes the potential of multiple downstream tasks such as scene reconstruction from multi-view stereo and novel view synthesis in extreme-view scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源