论文标题

超新星前体的发射和前爆发前恒星质量损失的起源

Supernova Precursor Emission and the Origin of Pre-Explosion Stellar Mass-Loss

论文作者

Matsumoto, Tatsuya, Metzger, Brian D.

论文摘要

越来越多的核心塌陷超新星(SNE)显示出与密集的杂质材料(CSM)相互作用的证据,并伴随着“前体”光学发射爆炸前数周到几个月。前体的亮度大大超过了祖细胞之星的爱丁顿限制,这意味着它们伴随着大量的质量损失。在这里,我们提出了一个用于SN前体光曲线的半分析模型,我们应用该模型来限制前爆炸质量损失的特性和机制。我们探索了两个有限的质量损失场景:(1)在恒星表面以下冲动能量沉积后,由冲击突破引起的“喷发”; (2)由于祖细胞包膜的持续加热而导致稳定的“风”。喷发模型类似于IIP类型的缩放版本,可以解释弹出式前体的发光性和时间表,对于弹出质量$ \ sim 0.1-1 \,m _ {\ odot} $,速度$ \ sim $ \ sim 100-1000-100-1000 \,\,\ rm km km km km km km km \ s^$} $ {相比之下,稳定的场景无法解释最高的前体亮度$ \ gtrsim10^{41} \,\ rm erg \ \,s^{ - 1} $,这是在总射流质量不超过整个祖先质量的限​​制下(尽管由较不报明的2020TLF前代都无法解释。 $ \ sim1 \,m _ {\ odot} \,\ rm yr^{ - 1} $)。但是,风与现有的(较早弹出)CSM之间的冲击相互作用可能提高其辐射效率并减轻这种约束。在喷发和风场中,前体弹射器形成紧凑型($ \ lyssim10^{15} $ cm)在核心崩溃时光学厚的CSM;尽管仅通过快速的爆炸后光谱(几天$ \ Lessim $几天)直接观察到,但该材料可以通过冲击相互作用来提高SN光度。

A growing number of core collapse supernovae (SNe) which show evidence for interaction with dense circumstellar material (CSM) are accompanied by "precursor" optical emission rising weeks to months prior to the explosion. The precursor luminosities greatly exceed the Eddington limit of the progenitor star, implying they are accompanied by substantial mass-loss. Here, we present a semi-analytic model for SN precursor light curves which we apply to constrain the properties and mechanisms of the pre-explosion mass-loss. We explore two limiting mass-loss scenarios: (1) an "eruption" arising from shock break-out following impulsive energy deposition below the stellar surface; (2) a steady "wind" due to sustained heating of the progenitor envelope. The eruption model, which resembles a scaled-down version of Type IIP SNe, can explain the luminosities and timescales of well-sampled precursors, for ejecta masses $\sim 0.1-1\,M_{\odot}$ and velocities $\sim 100-1000\,\rm km\,s^{-1}$. By contrast, the steady-wind scenario cannot explain the highest precursor luminosities $\gtrsim10^{41}\,\rm erg\,s^{-1}$, under the constraint that the total ejecta mass not exceed the entire progenitor mass (though the less-luminous SN 2020tlf precursor can be explained by a mass-loss rate $\sim1\,M_{\odot}\,\rm yr^{-1}$). However, shock interaction between the wind and pre-existing (earlier ejected) CSM may boost its radiative efficiency and mitigate this constraint. In both eruption and wind scenarios the precursor ejecta forms compact ($\lesssim10^{15}$ cm) optically-thick CSM at the time of core collapse; though only directly observable via rapid post-explosion spectroscopy ($\lesssim$ few days before being overtaken by the SN ejecta), this material can boost the SN luminosity via shock interaction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源