论文标题

巨大行星的内在和向外迁移:朝着停滞半径移动

Inward and outward migration of massive planets: moving towards a stalling radius

论文作者

Scardoni, C. E., Clarke, C. J., Rosotti, G. P., Booth, R. A., Alexander, R. D., Ragusa, E.

论文摘要

关于II型迁移的行星主导性制度的最新研究表明,与传统的智慧相反,大型行星可以向外迁移。使用“固定平面”模拟,这些研究发现作用于行星的扭矩的符号与参数$ k'$之间存在相关性(描述了行星在光盘中雕刻的间隙的深度)。我们执行探索$ k'$和圆盘质量值的“ Live-lanet”模拟,以测试和扩展这些结果。生命行星模拟中行星偏心率的激发破坏了迁移率(半轴轴变化速率)对施加的扭矩的直接依赖性,这种效果是“固定行星”模拟无法治疗。由于半轴轴的演变而导致的扭矩的贡献,由于偏心度的演变,我们恢复了迁移和$ k'$的幅度和迹象之间的关系,并认为可以通过相关的差距深度参数$ k $ k $更好地表达这种关系。我们提出了一个玩具模型,其中行星迁移的迹象以$ k $的限制值变化,我们通过它探索行星在粘性光盘中的迁移。扭矩逆转的存在通过在停滞半径或周围的频带中积累行星(由行星迁移与圆盘演化之间的相互作用定义)来塑造行星系统的体系结构。无论哪种情况,行星都在该地区堆积$ 1-10 $ au,通过行星统治的政权中的II型迁移来分散热木星的形成。

Recent studies on the planet-dominated regime of Type II migration showed that, contrary to the conventional wisdom, massive planets can migrate outwards. Using `fixed-planet' simulations these studies found a correlation between the sign of the torques acting on the planet and the parameter $K'$ (which describes the depth of the gap carved by the planet in the disc). We perform `live-planet' simulations exploring a range of $K'$ and disc mass values to test and extend these results. The excitation of planet eccentricity in live-planet simulations breaks the direct dependence of migration rate (rate of change of semi-major axis) on the torques imposed, an effect that `fixed-planet' simulations cannot treat. By disentangling the contribution to the torque due to the semi-major axis evolution from that due to the eccentricity evolution, we recover the relation between the magnitude and sign of migration and $K'$ and argue that this relation may be better expressed in terms of the related gap depth parameter $K$. We present a toy model in which the sign of planetary migration changes at a limiting value of $K$, through which we explore planets' migration in viscously evolving discs. The existence of the torque reversal shapes the planetary system's architecture by accumulating planets either at the stalling radius or in a band around it (defined by the interplay between the planet migration and the disc evolution). In either case, planets pile up in the area $1-10$ au, disfavouring hot Jupiter formation through Type II migration in the planet-dominated regime.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源