论文标题
OPENSRH:使用术中刺激的拉曼组织学优化脑肿瘤手术
OpenSRH: optimizing brain tumor surgery using intraoperative stimulated Raman histology
论文作者
论文摘要
准确的术中诊断对于在脑肿瘤手术期间提供安全有效的护理至关重要。我们的护理标准诊断方法是时间,资源和劳动力密集,这限制了获得最佳手术治疗的机会。为了解决这些局限性,我们提出了一种替代工作流程,将刺激的拉曼组织学(SRH)结合在一起,这是一种快速的光学成像方法,以及对SRH图像的深层自动解释,用于术中脑肿瘤诊断和实时手术决策支持。在这里,我们提出了OpenSRH,这是来自300多名脑肿瘤患者和1300多个独特全幻灯片光学图像的第一个公共数据集。 OPENSRH包含来自最常见的脑肿瘤诊断,完整的病理注释,整个幻灯片肿瘤分割,原始和加工的光学成像数据的数据,用于端到端模型的开发和验证。我们为使用弱(即患者级)诊断标签的基于补丁的整个幻灯片SRH分类和推断提供了一个框架。最后,我们基准了两项计算机视觉任务:多类组织学脑肿瘤分类和基于补丁的对比表示学习。我们希望OpenSRH能够促进快速光学成像和基于ML的手术决策支持的临床翻译,以提高精密医学时代的癌症手术的获取,安全性和功效。数据集访问,代码和基准可在opensrh.mlins.org上找到。
Accurate intraoperative diagnosis is essential for providing safe and effective care during brain tumor surgery. Our standard-of-care diagnostic methods are time, resource, and labor intensive, which restricts access to optimal surgical treatments. To address these limitations, we propose an alternative workflow that combines stimulated Raman histology (SRH), a rapid optical imaging method, with deep learning-based automated interpretation of SRH images for intraoperative brain tumor diagnosis and real-time surgical decision support. Here, we present OpenSRH, the first public dataset of clinical SRH images from 300+ brain tumors patients and 1300+ unique whole slide optical images. OpenSRH contains data from the most common brain tumors diagnoses, full pathologic annotations, whole slide tumor segmentations, raw and processed optical imaging data for end-to-end model development and validation. We provide a framework for patch-based whole slide SRH classification and inference using weak (i.e. patient-level) diagnostic labels. Finally, we benchmark two computer vision tasks: multiclass histologic brain tumor classification and patch-based contrastive representation learning. We hope OpenSRH will facilitate the clinical translation of rapid optical imaging and real-time ML-based surgical decision support in order to improve the access, safety, and efficacy of cancer surgery in the era of precision medicine. Dataset access, code, and benchmarks are available at opensrh.mlins.org.