论文标题
XLCOST:用于跨语法代码智能的基准数据集
XLCoST: A Benchmark Dataset for Cross-lingual Code Intelligence
论文作者
论文摘要
机器学习的最新进展大大提高了对源代码数据的理解,并在许多下游任务上取得了良好的性能。像GitHub这样的开源存储库可以使用丰富的未标记代码数据启用此过程。但是,缺乏高质量标记的数据在很大程度上阻碍了几个相关任务的进度,例如程序翻译,摘要,综合和代码搜索。本文介绍了XLCOST,跨语言代码摘要数据集,这是一种用于跨语言代码智能的新基准数据集。我们的数据集包含来自8种语言(7种常用的编程语言和英语)的细粒并行数据,并支持10个跨语性代码任务。据我们所知,就大小和语言数量而言,它是源代码的最大并行数据集。我们还为每个任务提供了几种最先进的基线模型的性能。我们认为,这个新数据集可能是研究界的宝贵资产,并促进了跨语法代码智能的新方法的开发和验证。
Recent advances in machine learning have significantly improved the understanding of source code data and achieved good performance on a number of downstream tasks. Open source repositories like GitHub enable this process with rich unlabeled code data. However, the lack of high quality labeled data has largely hindered the progress of several code related tasks, such as program translation, summarization, synthesis, and code search. This paper introduces XLCoST, Cross-Lingual Code SnippeT dataset, a new benchmark dataset for cross-lingual code intelligence. Our dataset contains fine-grained parallel data from 8 languages (7 commonly used programming languages and English), and supports 10 cross-lingual code tasks. To the best of our knowledge, it is the largest parallel dataset for source code both in terms of size and the number of languages. We also provide the performance of several state-of-the-art baseline models for each task. We believe this new dataset can be a valuable asset for the research community and facilitate the development and validation of new methods for cross-lingual code intelligence.