论文标题
探索具有高分辨率浅水建模的木星的极性变形长度
Exploring Jupiter's Polar Deformation Lengths with High Resolution Shallow Water Modeling
论文作者
论文摘要
木星的极性区域拥有无数动态有趣的现象,包括涡流配置,折叠丝区域(FFRS)和混沌流。 Juno观察结果提供了对高纬度的前所未有的观点,从而使对对流层和整体大气能周期更加限制。潮湿的对流事件被认为是地球上观察到的充满活力风暴行为的主要驱动力。在这里,我们介绍了一种新型的单层浅水模型,以研究高分辨率上的极性潮湿对流事件的影响,长时间尺度上的动态不稳定性以及在高纬度处的FFR出现。我们使用灵活的,高度可行的有限差分流体动力代码来探索先前型号设置的参数空间。我们研究变形长度(LD),注入脉冲大小和注入地球电位的长期影响。我们发现,LD超过1500 km的模型(行星汉堡号,bu $ = 4.4 \ times10^{ - 4} $)倾向于以优势稳定的极性旋风分子的形式使其潜在的涡度(PV)均匀,而LD较低的LD病例往往显示出较少的稳定性,而稳定性则较小,而稳定性则在Arnol'd-dyp-Yd-Dyp-Ydep-Ydep-ypepe Flow中均具有较小的稳定性。我们还发现,大湍流强迫量表始终导致高纬度FFR的形成。我们的发现支持以下想法:在高纬度上发生的潮湿对流可能足以产生在Jovian Pol中看到的动态变化。另外,局部水平剪切和LD的派生值可能会限制FFR的形成和进化。
The polar regions of Jupiter host a myriad of dynamically interesting phenomena including vortex configurations, folded-filamentary regions (FFRs), and chaotic flows. Juno observations have provided unprecedented views of the high latitudes, allowing for more constraints to be placed upon the troposphere and the overall atmospheric energy cycle. Moist convective events are believed to be the primary drivers of energetic storm behavior as observed on the planet. Here, we introduce a novel single layer shallow water model to investigate the effects of polar moist convective events at high resolution, the presence of dynamical instabilities over long timescales, and the emergence of FFRs at high latitudes. We use a flexible, highly parallelizable, finite-difference hydrodynamic code to explore the parameter space set up by previous models. We study the long term effects of deformation length (Ld), injected pulse size, and injected geopotential. We find that models with Ld beyond 1500 km (planetary Burger number, Bu$=4.4\times10^{-4}$) tend to homogenize their potential vorticity (PV) in the form of dominant stable polar cyclones, while lower Ld cases tend to show less stability with regards to Arnol'd-type flows. We also find that large turbulent forcing scales consistently lead to the formation of high latitude FFRs. Our findings support the idea that moist convection, occurring at high latitudes, may be sufficient to produce the dynamical variety seen at the Jovian poles. Additionally, derived values of localized horizontal shear and Ld may constrain FFR formation and evolution.