论文标题
通过显着指导的混音来提高分解机
Boosting Factorization Machines via Saliency-Guided Mixup
论文作者
论文摘要
由于其适应性和从稀疏数据中学习的能力,分解机(FMS)被广泛用于推荐系统。但是,对于稀疏数据中无处不在的非相互作用特征,现有的FMS只能通过其嵌入的内部产物估算与这些特征相对应的参数。不可否认,他们无法学习这些功能的直接相互作用,这限制了模型的表现力。为此,我们首先提出了受混合启发的MixFM,以生成辅助培训数据以增强FMS。与需要劳动成本和专业知识的现有增强策略不同,以收集其他信息,例如位置和领域,这些额外的数据仅是由原始凸组组合而没有任何专业知识支持的凸组组合而产生的。更重要的是,如果要混合的父样本具有非相互作用的特征,则MixFM将建立其直接相互作用。其次,考虑到MixFM可能会产生冗余甚至有害实例,我们进一步提出了由显着性引导混合供电(称为SMFM)提供动力的新型分解机。在自定义显着性的指导下,SMFM可以生成更具启示的邻居数据。通过理论分析,我们证明所提出的方法最大程度地减少了概括误差的上限,这对增强FMS具有有益的效果。值得注意的是,我们给出了FM的第一个概括结构,这意味着概括需要更多的数据,并且在足够的表示能力下需要较小的嵌入大小。最后,在五个数据集上进行的大量实验证实,我们的方法优于基准。此外,结果表明,“中毒”混合数据同样对FM变体有益。
Factorization machines (FMs) are widely used in recommender systems due to their adaptability and ability to learn from sparse data. However, for the ubiquitous non-interactive features in sparse data, existing FMs can only estimate the parameters corresponding to these features via the inner product of their embeddings. Undeniably, they cannot learn the direct interactions of these features, which limits the model's expressive power. To this end, we first present MixFM, inspired by Mixup, to generate auxiliary training data to boost FMs. Unlike existing augmentation strategies that require labor costs and expertise to collect additional information such as position and fields, these extra data generated by MixFM only by the convex combination of the raw ones without any professional knowledge support. More importantly, if the parent samples to be mixed have non-interactive features, MixFM will establish their direct interactions. Second, considering that MixFM may generate redundant or even detrimental instances, we further put forward a novel Factorization Machine powered by Saliency-guided Mixup (denoted as SMFM). Guided by the customized saliency, SMFM can generate more informative neighbor data. Through theoretical analysis, we prove that the proposed methods minimize the upper bound of the generalization error, which hold a beneficial effect on enhancing FMs. Significantly, we give the first generalization bound of FM, implying the generalization requires more data and a smaller embedding size under the sufficient representation capability. Finally, extensive experiments on five datasets confirm that our approaches are superior to baselines. Besides, the results show that "poisoning" mixed data is likewise beneficial to the FM variants.