论文标题
noether指控形式主义用于重力理论
Noether charge formalism for Weyl invariant theories of gravity
论文作者
论文摘要
在横向差异和WEYL转化下不变的引力理论具有与相应的完全差异不变理论相同的经典溶液。但是,它们解决了与宇宙常数有关的一些问题,原则上允许局部能量不保存。在目前的工作中,我们获得了这些理论的Noether指控形式主义。我们首先得出了与横向差异和WEYL变换相对应的Noether电流和电荷的表达式,表明后者的消失相同。然后,我们使用这些结果来获得表达式,以驱动与沿横向差异发生器进化相对应的哈密顿量。从这个表达中,我们得出了黑洞力学的第一定律,确定了总能量,总角动量,沃尔德熵以及宇宙学恒定恒定扰动和能量不保守的贡献。最后,我们扩展了形式主义,以得出因果钻石的第一定律。
Gravitational theories invariant under transverse diffeomorphisms and Weyl transformations have the same classical solutions as the corresponding fully diffeomorphism invariant theories. However, they solve some of the problems related to the cosmological constant and in principle allow local energy non-conservation. In the present work, we obtain the Noether charge formalism for these theories. We first derive expressions for the Noether currents and charges corresponding to transverse diffeomorphisms and Weyl transformations, showing that the latter vanish identically. We then use these results to obtain an expression for a perturbation of a Hamiltonian corresponding to evolution along a transverse diffeomorphism generator. From this expression, we derive the first law of black hole mechanics, identifying the total energy, the total angular momentum, the Wald entropy, and the contributions of the cosmological constant perturbations and energy non-conservation. Lastly, we extend our formalism to derive the first law of causal diamonds.