论文标题

花圈产品和灯塔组的死端

Dead ends on wreath products and lamplighter groups

论文作者

Silva, Eduardo

论文摘要

对于任何有限的组$ a $和任何有限生成的组$ b $,我们证明相应的lamplighter组$ a \ wr b $允许具有无限深度的标准生成集,如果$ b $是abelian,那么上面的是每个标准生成集合。这概括了$ b = \ mathbb {z} $以及由于Cleary和Taback而引起的循环发生器。当$ b = h*k $是两个有限组$ h $和$ k $的免费产品时,我们表明哪些相关灯塔组的标准发电机在与$ h $和$ k $的Cayley图相关的几何常数方面具有无限的深度。特别是,我们发现与一维情况的差异:在两个足够大的有限循环基团的自由产物上的lamplighter组相对于某些标准生成集具有统一的界限深度。

For any finite group $A$ and any finitely generated group $B$, we prove that the corresponding lamplighter group $A\wr B$ admits a standard generating set with unbounded depth, and that if $B$ is abelian then the above is true for every standard generating set. This generalizes the case where $B=\mathbb{Z}$ together with its cyclic generator due to Cleary and Taback. When $B=H*K$ is the free product of two finite groups $H$ and $K$, we characterize which standard generators of the associated lamplighter group have unbounded depth in terms of a geometrical constant related to the Cayley graphs of $H$ and $K$. In particular, we find differences with the one-dimensional case: the lamplighter group over the free product of two sufficiently large finite cyclic groups has uniformly bounded depth with respect to some standard generating set.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源