论文标题

ctooth:完全注释的3D数据集和基准,用于锥形束计算机断层扫描图像的牙齿体积分割

CTooth: A Fully Annotated 3D Dataset and Benchmark for Tooth Volume Segmentation on Cone Beam Computed Tomography Images

论文作者

Cui, Weiwei, Wang, Yaqi, Zhang, Qianni, Zhou, Huiyu, Song, Dan, Zuo, Xingyong, Jia, Gangyong, Zeng, Liaoyuan

论文摘要

3D牙齿分割是计算机辅助牙科诊断和治疗的先决条件。但是,将所有牙齿区域分割为主观且耗时。最近,基于深度学习的细分方法会产生令人信服的结果并减少手动注释工作,但需要大量的基础真相进行培训。据我们所知,3D分割研究几乎没有牙齿数据。在本文中,我们建立了带有牙齿金标准的完全注释的锥束计算机断层扫描数据集。该数据集包含22卷(7363片),并带有经验丰富的射线照相解释者注释的细牙标签。为了确保相对偶数数据采样分布,数据方差包括在牙齿中,包括缺失的牙齿和牙齿修复。在此数据集上评估了几种最新的分割方法。之后,我们进一步总结并应用了一系列基于3D注意的UNET变体以分割牙齿。这项工作为牙齿量细分任务提供了新的基准。实验证据证明,3D UNET结构的注意力模块增强了牙齿区域中的反应并抑制背景和噪声的影响。最佳性能是通过SKNET注意模块的3D UNET,分别为88.04 \%骰子和78.71 \%iou。基于注意力的UNET框架的表现优于Ctooth数据集上的其他最新方法。释放代码库和数据集。

3D tooth segmentation is a prerequisite for computer-aided dental diagnosis and treatment. However, segmenting all tooth regions manually is subjective and time-consuming. Recently, deep learning-based segmentation methods produce convincing results and reduce manual annotation efforts, but it requires a large quantity of ground truth for training. To our knowledge, there are few tooth data available for the 3D segmentation study. In this paper, we establish a fully annotated cone beam computed tomography dataset CTooth with tooth gold standard. This dataset contains 22 volumes (7363 slices) with fine tooth labels annotated by experienced radiographic interpreters. To ensure a relative even data sampling distribution, data variance is included in the CTooth including missing teeth and dental restoration. Several state-of-the-art segmentation methods are evaluated on this dataset. Afterwards, we further summarise and apply a series of 3D attention-based Unet variants for segmenting tooth volumes. This work provides a new benchmark for the tooth volume segmentation task. Experimental evidence proves that attention modules of the 3D UNet structure boost responses in tooth areas and inhibit the influence of background and noise. The best performance is achieved by 3D Unet with SKNet attention module, of 88.04 \% Dice and 78.71 \% IOU, respectively. The attention-based Unet framework outperforms other state-of-the-art methods on the CTooth dataset. The codebase and dataset are released.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源