论文标题

避免在联合关键字发现中过度拟合用户特定信息

Avoid Overfitting User Specific Information in Federated Keyword Spotting

论文作者

Li, Xin-Chun, Tang, Jin-Lin, Song, Shaoming, Li, Bingshuai, Li, Yinchuan, Shao, Yunfeng, Gan, Le, Zhan, De-Chuan

论文摘要

关键字斑点(KWS)旨在将特定的唤醒单词与其他信号区分开,以精确有效地为不同的用户区分。最近的工作利用各种深层网络培训KWS模型,并以所有用户的语音数据集中培训,而无需考虑数据隐私。联合KWS(FEDKW)可以无需直接共享用户的数据而作为解决方案。但是,少量数据,不同的用户习惯和各种口音可能导致致命问题,例如过度拟合或体重差异。因此,我们提出了几种策略,以鼓励该模型不要过度适合FEDKW中的用户特定信息。具体来说,我们首先提出了一种对抗性学习策略,该策略会根据过度适用的本地模型更新下载的全局模型,并明确鼓励全局模型捕获用户不变的信息。此外,我们提出了一种自适应的本地培训策略,让客户拥有更多的培训数据,并且更统一的班级分布采取了更多的本地更新步骤。同等地,这种策略可以削弱那些数据较少资格的用户的负面影响。我们提出的fedkws-UI可以在FEDKWS中明确和隐含地学习用户不变信息。对联邦Google语音命令的大量实验结果验证了FEDKWS-UI的有效性。

Keyword spotting (KWS) aims to discriminate a specific wake-up word from other signals precisely and efficiently for different users. Recent works utilize various deep networks to train KWS models with all users' speech data centralized without considering data privacy. Federated KWS (FedKWS) could serve as a solution without directly sharing users' data. However, the small amount of data, different user habits, and various accents could lead to fatal problems, e.g., overfitting or weight divergence. Hence, we propose several strategies to encourage the model not to overfit user-specific information in FedKWS. Specifically, we first propose an adversarial learning strategy, which updates the downloaded global model against an overfitted local model and explicitly encourages the global model to capture user-invariant information. Furthermore, we propose an adaptive local training strategy, letting clients with more training data and more uniform class distributions undertake more local update steps. Equivalently, this strategy could weaken the negative impacts of those users whose data is less qualified. Our proposed FedKWS-UI could explicitly and implicitly learn user-invariant information in FedKWS. Abundant experimental results on federated Google Speech Commands verify the effectiveness of FedKWS-UI.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源