论文标题
攀登:视觉和语言任务的持续学习基准
CLiMB: A Continual Learning Benchmark for Vision-and-Language Tasks
论文作者
论文摘要
当前的最新视觉和语言模型是单独或在多任务设置中的任务上评估的,忽略了持续学习(CL)任务到达时的挑战。现有的CLENG基准促进了有关调整任务的研究和减轻“灾难性遗忘”的研究,但仅限于仅视觉和仅语言的任务。我们提出了攀登,这是研究CL设置中学习多模式任务的挑战的基准,并系统地评估上游持续学习如何迅速概括为新的多模式和单峰任务。攀登包括几种CL算法的实现以及可以在多模式和单峰任务上部署的修改视觉语言变压器(VILT)模型。我们发现,常见的CL方法可以帮助减轻多模式任务学习期间的遗忘,但不要实现交叉任务知识转移。我们设想,攀登将有助于针对这种具有挑战性的多模式环境的新的CL算法进行研究。
Current state-of-the-art vision-and-language models are evaluated on tasks either individually or in a multi-task setting, overlooking the challenges of continually learning (CL) tasks as they arrive. Existing CL benchmarks have facilitated research on task adaptation and mitigating "catastrophic forgetting", but are limited to vision-only and language-only tasks. We present CLiMB, a benchmark to study the challenge of learning multimodal tasks in a CL setting, and to systematically evaluate how upstream continual learning can rapidly generalize to new multimodal and unimodal tasks. CLiMB includes implementations of several CL algorithms and a modified Vision-Language Transformer (ViLT) model that can be deployed on both multimodal and unimodal tasks. We find that common CL methods can help mitigate forgetting during multimodal task learning, but do not enable cross-task knowledge transfer. We envision that CLiMB will facilitate research on a new class of CL algorithms for this challenging multimodal setting.