论文标题
钻石晶体中的氮呈诱导的超快光磁效应
Ultrafast opto-magnetic effects induced by nitrogen-vacancy centers in diamond crystals
论文作者
论文摘要
当前使用钻石晶体中颜色中心的量子传感技术主要基于以下原理:氮气散发(NV)中心之间发光的谐振微波频率随温度,电场和磁场而变化。该原理使我们能够测量磁场和电场,以及纳米分辨率与扫描探针显微镜(SPM)结合使用的局部温度。但是,由于发光寿命有限,传统量子传感技术的时间分辨率已限于微秒。在这里,我们研究了含氮呈NV中心的钻石晶体中的超快光磁效应,以改善量子传感到亚皮秒时间尺度的时间分辨率。来自Diamond NV中心的自旋合奏在飞秒泵探针测量中以次秒光学响应的形式诱导了棉花摩孔效应(ICME)。 ICME的螺旋性和二次功率依赖性可以解释为二阶光磁效应,其中NV电子旋转的集合起到ICME的来源。该结果为与SPM技术结合使用时提供了基本指南,以实现高分辨率的空间量子传感技术。
The current generation of quantum sensing technologies using color centers in diamond crystals is primarily based on the principle that the resonant microwave frequency of the luminescence between quantum levels of the nitrogen-vacancy (NV) center varies with temperature, electric and magnetic fields. This principle enables us to measure, for instance, magnetic and electric fields, as well as local temperature with nanometer resolution in conjunction with a scanning probe microscope (SPM). However, the time resolution of conventional quantum sensing technologies has been limited to microseconds due to the limited luminescence lifetime. Here, we investigate ultrafast opto-magnetic effects in diamond crystals containing nitrogen-vacancy NV centers to improve the time resolution of quantum sensing to sub-picosecond time scales. The spin ensemble from diamond NV centers induces an inverse Cotton-Mouton effect (ICME) in the form of a sub-picosecond optical response in a femtosecond pump-probe measurement. The helicity and quadratic power dependence of the ICME can be interpreted as a second-order opto-magnetic effect in which ensembles of NV electron spins act as a source for the ICME. The results provide fundamental guidelines for enabling high-resolution spatial-time quantum sensing technologies when combined with SPM techniques.