论文标题
通过量子材料中的地表到式库仑耦合的超快电子热量耗散
Ultrafast electronic heat dissipation through surface-to-bulk Coulomb coupling in quantum materials
论文作者
论文摘要
电子冷却的时间尺度是基于光电,热电和热管理应用程序的量子材料控制设备性能的重要参数。在大多数常规材料中,冷却是通过发出声子进行的,这是一个相对较慢的过程,可以瓶颈载体放松动力学,从而降低设备性能。在这里,我们介绍了近场辐射传热的理论,该理论是在通过非粘贴库仑相互作用与三维体积的二维电子系统耦合时发生的,该理论可以用作非常有效的电子散热器。我们将理论应用于研究三维拓扑绝缘子的表面状态的冷却动力学,以及与小间隙大块材料接近的石墨烯的冷却动力学。我们介绍的``库仑冷却''是常规声子介导的冷却的替代方法,在某些情况下可以非常有效,并且在某些情况下占主导地位。我们表明,这种冷却机制可以导致次秒时间尺度,比在狄拉克材料中通常观察到的冷却动力学要快得多。
The timescale of electronic cooling is an important parameter controlling the performance of devices based on quantum materials for optoelectronic, thermoelectric and thermal management applications. In most conventional materials, cooling proceeds via the emission of phonons, a relatively slow process that can bottleneck the carrier relaxation dynamics, thus degrading the device performance. Here we present the theory of near-field radiative heat transfer, that occurs when a two-dimensional electron system is coupled via the non-retarded Coulomb interaction to a three-dimensional bulk that can behave as a very efficient electronic heat sink. We apply our theory to study the cooling dynamics of surface states of three dimensional topological insulators, and of graphene in proximity to small-gap bulk materials. The ``Coulomb cooling'' we introduce is alternative to the conventional phonon-mediated cooling, can be very efficient and dominate the cooling dynamics under certain circumstances. We show that this cooling mechanism can lead to a sub-picosecond time scale, significantly faster than the cooling dynamics normally observed in Dirac materials.