论文标题
各向同性司法的同质ACM捆绑
Homogeneous ACM bundles on isotropic Grassmannians
论文作者
论文摘要
在本文中,我们表征了同质算术库恩·麦考拉(Cohen-Macaulay)(ACM)捆绑式的$ b $,$ c $和$ c $和$ d $的各向同性司羊毛夹。我们表明,只有在这些各向同性的拉格曼尼亚人上扭曲线束,只有许多不可约定的同质ACM捆绑包。因此,我们将所有同质的ACM捆绑在各向同性的司法捆绑中,结合了Costa和Mir {ó} -Roig对通常的司司曼尼亚人的结果。此外,如果不可修复的初始化同质ACM束对应于一些特殊的最高权重,则可以通过简洁的形式来表征它们。
In this paper, we characterize homogeneous arithmetically Cohen-Macaulay (ACM) bundles over isotropic Grassmannians of types $B$, $C$ and $D$ in term of step matrices. We show that there are only finitely many irreducible homogeneous ACM bundles by twisting line bundles over these isotropic Grassmannians. So we classify all homogeneous ACM bundles over isotropic Grassmannians combining the results on usual Grassmannians by Costa and Mir{ó}-Roig. Moreover, if the irreducible initialized homogeneous ACM bundles correspond to some special highest weights, then they can be characterized by succinct forms.