论文标题

EEML:合奏嵌入式元学习

EEML: Ensemble Embedded Meta-learning

论文作者

Li, Geng, Ren, Boyuan, Wang, Hongzhi

论文摘要

为了加速学习过程,几乎没有样本,元学习求助于以前的任务的先验知识。但是,很难通过全球共享模型初始化来处理任务分布和异质性不一致的。在本文中,基于基于梯度的元学习,我们提出了一种合奏嵌入式的元学习算法(EEML),该算法(EEML)明确利用多模型融合来将先验知识组织成各种特定的专家。我们依靠嵌入集群机制的任务来将各种任务交付给匹配培训过程的专家,并指导专家如何在测试阶段进行协作。结果,多人专家可以专注于自己的专业知识领域,并在即将完成的任务上合作解决任务异质性。实验结果表明,所提出的方法在几乎没有学习问题中轻松地优于最新的最新方法,这证实了分化与合作的重要性。

To accelerate learning process with few samples, meta-learning resorts to prior knowledge from previous tasks. However, the inconsistent task distribution and heterogeneity is hard to be handled through a global sharing model initialization. In this paper, based on gradient-based meta-learning, we propose an ensemble embedded meta-learning algorithm (EEML) that explicitly utilizes multi-model-ensemble to organize prior knowledge into diverse specific experts. We rely on a task embedding cluster mechanism to deliver diverse tasks to matching experts in training process and instruct how experts collaborate in test phase. As a result, the multi experts can focus on their own area of expertise and cooperate in upcoming task to solve the task heterogeneity. The experimental results show that the proposed method outperforms recent state-of-the-arts easily in few-shot learning problem, which validates the importance of differentiation and cooperation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源