论文标题

C* - 代数casas-alvero猜想

C*-algebraic Casas-Alvero Conjecture

论文作者

Krishna, K. Mahesh

论文摘要

基于casas-alvero猜想\ textit {[j。代数,2001]}我们制定以下猜想。 (z-a_n)$是$ \ mathcal {a} $的多项式,带有$ a_1,a_2,\ dots,a_n \ in \ mathcal {a} $。如果$ p $与其每个(第一个)$ n-1 $衍生物中的每个(第一个)$ n^\ text {th} $线性c*-algebraic多项式的功率。

Based on Casas-Alvero conjecture \textit{[J. Algebra, 2001]} we formulate the following conjecture.\\ \textbf{C*-algebraic Casas-Alvero Conjecture : Let $\mathcal{A}$ be a commutative C*-algebra, $n\in \mathbb{N}$ and let $P(z) = (z-a_1)(z-a_2)\cdots (z-a_n)$ be a polynomial over $\mathcal{A}$ with $a_1, a_2, \dots, a_n \in \mathcal{A}$. If $P$ shares a common zero with each of its (first) $n-1$ derivatives, then it is $n^\text{th}$ power of a linear monic C*-algebraic polynomial.}\\ We show that C*-algebraic Casas-Alvero Conjecture holds for C*-algebraic polynomials of degree 2.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源