论文标题
通过联邦深厚的加固学习在雾无线电网络中的编码缓存
Coded Caching via Federated Deep Reinforcement Learning in Fog Radio Access Networks
论文作者
论文摘要
在本文中,研究了FOG-RADIO访问网络(F-RAN)中编码缓存的位置策略设计。通过考虑时间变化的内容流行,可以利用联合的深入加强学习来学习我们的编码缓存计划的放置策略。最初,将放置问题建模为马尔可夫决策过程(MDP),以捕获流行度变化并最大程度地减少长期内容访问延迟。通过决策双重Q学习(Dueling DDQL)来解决重新制定的顺序决策问题。然后,将联合学习应用于学习相对较低的本地决策模型并汇总全球决策模型,该模型减轻了带宽资源的过度消费,并避免直接学习具有高维状态空间的复杂编码的缓存决策模型。仿真结果表明,我们提出的方案在减少内容访问延迟,保持性能稳定并在本地缓存增益与全球多播累积增益之间进行交易方面优于基准。
In this paper, the placement strategy design of coded caching in fog-radio access networks (F-RANs) is investigated. By considering time-variant content popularity, federated deep reinforcement learning is exploited to learn the placement strategy for our coded caching scheme. Initially, the placement problem is modeled as a Markov decision process (MDP) to capture the popularity variations and minimize the long-term content access delay. The reformulated sequential decision problem is solved by dueling double deep Q-learning (dueling DDQL). Then, federated learning is applied to learn the relatively low-dimensional local decision models and aggregate the global decision model, which alleviates over-consumption of bandwidth resources and avoids direct learning of a complex coded caching decision model with high-dimensional state space. Simulation results show that our proposed scheme outperforms the benchmarks in reducing the content access delay, keeping the performance stable, and trading off between the local caching gain and the global multicasting gain.