论文标题
$ \ dot {h}^{\ frac {1} {2}} $中3D Navier-Stokes和Navier-Stokes-Coriolis方程的代数衰减率
Algebraic decay rates for 3D Navier-Stokes and Navier-Stokes-Coriolis equations in $ \dot{H}^{\frac{1}{2}}$
论文作者
论文摘要
对于关键空间中的Navier-Stokes和Navier-Stokes-Coriolis方程的解决方案的衰减率的代数上限$ \ dot {h} ^{\ frac {1} {2}}}}}}}}}}}(\ m mathbb {r} ^3)$是使用Fourier Splitting方法得出的。估计值是根据初始数据的衰减特征进行构建的,这导致了具有代数衰减的解决方案,并详细介绍了线性和非线性零件的作用。
An algebraic upper bound for the decay rate of solutions to the Navier-Stokes and Navier-Stokes-Coriolis equations in the critical space $\dot{H} ^{\frac{1}{2}} (\mathbb{R} ^3)$ is derived using the Fourier Splitting Method. Estimates are framed in terms of the decay character of initial data, leading to solutions with algebraic decay and showing in detail the roles played by the linear and nonlinear parts.