论文标题

线性交叉八角形四边形网络的(学位)-Kirchhoff指数

The (degree)-Kirchhoff index of linear crossed octagonal-quadrilateral networks

论文作者

Liu, Jia-Bao, Zhang, Ting, Lin, Wenshui

论文摘要

Kirchhoff指数和Kirchhoff学位指数由于其在复杂的网络,物理和化学中的实际应用而引起了广泛的关注。在2019年,Liu等人。 [int。 J.量子化学。 119(2019)E25971]得出了线性八角形颈网络的Kirchhoff学位指数的公式。在本文中,我们考虑了线性交叉的八角形颈网$ q_n $。获得了Kirchhoff索引的显式封闭式公式,学位 - Kirchhoff索引以及$ Q_N $的跨越树的数量。此外,$ q_n $的Kirchhoff指数(分别为Kirchhoff index)被证明是其Wiener索引的1/4(分别为Gutman Index)。

The Kirchhoff index and degree-Kirchhoff index have attracted extensive attentions due to its practical applications in complex networks, physics, and chemistry. In 2019, Liu et al. [Int. J. Quantum Chem. 119 (2019) e25971] derived the formula of the degree-Kirchhoff index of linear octagonal-quadrilateral networks. In the present paper, we consider linear crossed octagonal-quadrilateral networks $Q_n$. Explicit closed-form formulas of the Kirchhoff index, the degree-Kirchhoff index, and the number of spanning trees of $Q_n$ are obtained. Moreover, the Kirchhoff index (resp. degree-Kirchhoff index) of $Q_n$ is shown to be almost 1/4 of its Wiener index (resp. Gutman index).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源