论文标题
log-gpis-mop:用于映射,进程和计划的统一表示形式
Log-GPIS-MOP: A Unified Representation for Mapping, Odometry and Planning
论文作者
论文摘要
尽管常规机器人系统中的每个不同任务都需要专用的场景表示形式,但本文表明,统一表示形式可以直接用于多个关键任务。我们提出了用于映射,进程和计划(LOG-GPIS-MOP)的log-gaussian过程隐式表面:基于统一表示形式的表面重建,本地化和导航的概率框架。我们的框架将对数转换应用于高斯过程隐式表面(GPIS)公式,以恢复全局表示,该全局表示可以准确捕获具有梯度的欧几里得距离场,同时又是隐式表面。通过直接通过LOG-GPIS推断估算距离场及其梯度,提出的增量进程技术可以计算传入帧的最佳对齐,并在全球范围内融合以生成MAP。同时,基于优化的计划者使用相同的LOG-GPIS表面表示计算安全的无碰撞路径。我们根据最先进的方法验证了2D和3D和基准的模拟和实际数据集的拟议框架。我们的实验表明,LOG-GPIS-MOP在顺序的探光度,表面映射和避免障碍物中产生竞争结果。
Whereas dedicated scene representations are required for each different task in conventional robotic systems, this paper demonstrates that a unified representation can be used directly for multiple key tasks. We propose the Log-Gaussian Process Implicit Surface for Mapping, Odometry and Planning (Log-GPIS-MOP): a probabilistic framework for surface reconstruction, localisation and navigation based on a unified representation. Our framework applies a logarithmic transformation to a Gaussian Process Implicit Surface (GPIS) formulation to recover a global representation that accurately captures the Euclidean distance field with gradients and, at the same time, the implicit surface. By directly estimating the distance field and its gradient through Log-GPIS inference, the proposed incremental odometry technique computes the optimal alignment of an incoming frame and fuses it globally to produce a map. Concurrently, an optimisation-based planner computes a safe collision-free path using the same Log-GPIS surface representation. We validate the proposed framework on simulated and real datasets in 2D and 3D and benchmark against the state-of-the-art approaches. Our experiments show that Log-GPIS-MOP produces competitive results in sequential odometry, surface mapping and obstacle avoidance.