论文标题

3D非线性SAR成像的数值重建,通过凸化方法的版本

Numerical reconstruction for 3D nonlinear SAR imaging via a version of the convexification method

论文作者

Khoa, Vo Anh, Klibanov, Michael Victor, Powell, William Grayson, Nguyen, Loc Hoang

论文摘要

这项工作扩展了我们最近基于凸的算法的适用性,用于构建埋入或遮挡目标的介电常数图像。我们面向检测类似爆炸物的目标,例如对建筑物的非侵入性检查中的反射矿山和简易的爆炸装置。在我们以前的工作中,该方法是从一个角度出现的,即我们使用沿源线运行的多个源位置来获得介电函数的2D图像。从数学上讲,我们为每个源位置的双曲线方程解决了1D系数的反问题。与任何用于合成孔径雷达的常规基于诞生的近似技术不同,此方法不需要任何线性化。在本文中,我们尝试使用使用模拟数据的几个3D数值测试来验证该方法。我们重新审视计算方法的梯度下降方法的全球融合。

This work extends the applicability of our recent convexification-based algorithm for constructing images of the dielectric constant of buried or occluded target. We are orientated towards the detection of explosive-like targets such as antipersonnel land mines and improvised explosive devices in the non-invasive inspections of buildings. In our previous work, the method is posed in the perspective that we use multiple source locations running along a line of source to get a 2D image of the dielectric function. Mathematically, we solve a 1D coefficient inverse problem for a hyperbolic equation for each source location. Different from any conventional Born approximation-based technique for synthetic-aperture radar, this method does not need any linearization. In this paper, we attempt to verify the method using several 3D numerical tests with simulated data. We revisit the global convergence of the gradient descent method of our computational approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源