论文标题
通过线性时间逻辑约束的策略优化
Policy Optimization with Linear Temporal Logic Constraints
论文作者
论文摘要
我们使用线性时间逻辑(LTL)约束研究策略优化问题(PO)。 LTL的语言允许灵活地描述可能不自然的任务,以编码为标量成本函数。我们将LTL受限的PO视为系统的框架,将任务规范与策略选择取消,并作为成本塑造标准的替代方案。通过访问生成模型,我们开发了一种基于模型的方法,该方法享有样本复杂性分析,以确保任务满意度和成本最佳性(通过减少到可达性问题)。从经验上讲,即使在低样本制度中,我们的算法也可以实现强大的性能。
We study the problem of policy optimization (PO) with linear temporal logic (LTL) constraints. The language of LTL allows flexible description of tasks that may be unnatural to encode as a scalar cost function. We consider LTL-constrained PO as a systematic framework, decoupling task specification from policy selection, and as an alternative to the standard of cost shaping. With access to a generative model, we develop a model-based approach that enjoys a sample complexity analysis for guaranteeing both task satisfaction and cost optimality (through a reduction to a reachability problem). Empirically, our algorithm can achieve strong performance even in low-sample regimes.