论文标题
来自未标记数据的结构化知识的域自适应文本分类
Domain-Adaptive Text Classification with Structured Knowledge from Unlabeled Data
论文作者
论文摘要
对于大规模预处理的语言模型,域自适应文本分类是一个具有挑战性的问题,因为它们通常需要昂贵的额外标记数据来适应新领域。现有作品通常无法利用跨域单词之间的隐式关系。在本文中,我们提出了一种新的方法,称为结构化知识(DASK)的域适应性,以通过利用单词级别的语义关系来增强域的适应性。 Dask首先构建知识图,以捕获目标域中的枢轴项(独立于域的单词)和非居式项之间的关系。然后,在培训期间,DASK注入与源域文本的枢轴相关知识图信息。对于下游任务,这些注入知识的文本被馈入能够处理知识注入文本数据的BERT变体。多亏了知识注入,我们的模型根据与枢轴的关系学习了非居民的域不变特征。 DASK通过在使用伪标签训练期间通过候选枢轴的极性得分动态推断出具有域不变行为的枢轴。我们在各种跨域情绪分类任务上验证了DASK,并且观察到20种不同领域对的基准的绝对性能提高了2.9%。代码将在https://github.com/hikaru-nara/dask上提供。
Domain adaptive text classification is a challenging problem for the large-scale pretrained language models because they often require expensive additional labeled data to adapt to new domains. Existing works usually fails to leverage the implicit relationships among words across domains. In this paper, we propose a novel method, called Domain Adaptation with Structured Knowledge (DASK), to enhance domain adaptation by exploiting word-level semantic relationships. DASK first builds a knowledge graph to capture the relationship between pivot terms (domain-independent words) and non-pivot terms in the target domain. Then during training, DASK injects pivot-related knowledge graph information into source domain texts. For the downstream task, these knowledge-injected texts are fed into a BERT variant capable of processing knowledge-injected textual data. Thanks to the knowledge injection, our model learns domain-invariant features for non-pivots according to their relationships with pivots. DASK ensures the pivots to have domain-invariant behaviors by dynamically inferring via the polarity scores of candidate pivots during training with pseudo-labels. We validate DASK on a wide range of cross-domain sentiment classification tasks and observe up to 2.9% absolute performance improvement over baselines for 20 different domain pairs. Code will be made available at https://github.com/hikaru-nara/DASK.