论文标题

gidr-dun;梯度维度降低 - 差异和统一

GiDR-DUN; Gradient Dimensionality Reduction -- Differences and Unification

论文作者

Draganov, Andrew, Berry, Tyrus, Jørgensen, Jakob Rødsgaard, Nellemann, Katrine Scheel, Assent, Ira, Mottin, Davide

论文摘要

TSNE和UMAP是两个最流行的降低算法,因为它们的速度和可解释的低维嵌入。但是,尽管已经尝试改善TSNE的计算复杂性,但现有方法无法以UMAP的速度获得TSNE嵌入。在这项工作中,我们表明,通过将两种方法组合为单一方法,这确实是可能的。我们从理论上和实验上评估了TSNE和UMAP算法中参数的完整空间,并观察到单个参数(归一化)负责在它们之间切换。反过来,这意味着可以切换大多数算法差异而不会影响嵌入。我们讨论了这对基于UMAP框架的几种理论主张的含义,以及如何将其与现有的TSNE解释调和。基于我们的分析,我们提出了一种新的降低性降低算法GDR,该算法结合了先前来自TSNE和UMAP的不兼容技术,并且可以通过更改归一化来复制任何一种算法的结果。作为进一步的优势,GDR比可用的UMAP方法更快地执行优化,因此比可用的TSNE方法快的数量级。我们的实现是使用传统的UMAP和TSNE库的插件,可以在github.com/andrew-draganov/gidr-dun上找到。

TSNE and UMAP are two of the most popular dimensionality reduction algorithms due to their speed and interpretable low-dimensional embeddings. However, while attempts have been made to improve on TSNE's computational complexity, no existing method can obtain TSNE embeddings at the speed of UMAP. In this work, we show that this is indeed possible by combining the two approaches into a single method. We theoretically and experimentally evaluate the full space of parameters in the TSNE and UMAP algorithms and observe that a single parameter, the normalization, is responsible for switching between them. This, in turn, implies that a majority of the algorithmic differences can be toggled without affecting the embeddings. We discuss the implications this has on several theoretic claims underpinning the UMAP framework, as well as how to reconcile them with existing TSNE interpretations. Based on our analysis, we propose a new dimensionality reduction algorithm, GDR, that combines previously incompatible techniques from TSNE and UMAP and can replicate the results of either algorithm by changing the normalization. As a further advantage, GDR performs the optimization faster than available UMAP methods and thus an order of magnitude faster than available TSNE methods. Our implementation is plug-and-play with the traditional UMAP and TSNE libraries and can be found at github.com/Andrew-Draganov/GiDR-DUN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源