论文标题
关于霍奇泰特频谱序列的注释
A Note on Hodge-Tate Spectral Sequences
论文作者
论文摘要
我们证明,可以通过Bialynicki-birula Map通过Bialynicki-birula Map来证明可以通过Bialynicki-birula Map从其无限的$ \ Mathbb {b} _ {\ text {dr}}^+$ - 共同体从其无限的$ \ mathbb {b} _ {b} _ {Bialynicki-birula map从其无限的$ \ mathbb {b} _ {b} _ {b} _ {b} _ {b} _ {b} _ {b} _ {b} _ {b} _ {b} _ {b} _ {b} _ {b} _介绍了decalage functor $lη$的改进以完成证明。 Further, we give a new proof of the torsion-freeness of the infinitesimal $\mathbb{B}_{\text{dR}}^+$-cohomology independent of Conrad-Gabber spreading theorem, and a conceptual explanation that the degeneration of Hodge-Tate spectral sequences is equivalent to that of Hodge-de Rham spectral sequences.
We prove that the Hodge-Tate spectral sequence of a proper smooth rigid analytic variety can be reconstructed from its infinitesimal $\mathbb{B}_{\text{dR}}^+$-cohomology through the Bialynicki-Birula map. A refinement of the decalage functor $Lη$ is introduced to accomplish the proof. Further, we give a new proof of the torsion-freeness of the infinitesimal $\mathbb{B}_{\text{dR}}^+$-cohomology independent of Conrad-Gabber spreading theorem, and a conceptual explanation that the degeneration of Hodge-Tate spectral sequences is equivalent to that of Hodge-de Rham spectral sequences.