论文标题

Shapley-NAS:发现神经建筑搜索的操作贡献

Shapley-NAS: Discovering Operation Contribution for Neural Architecture Search

论文作者

Xiao, Han, Wang, Ziwei, Zhu, Zheng, Zhou, Jie, Lu, Jiwen

论文摘要

在本文中,我们提出了一种基于沙普利价值的方法,以评估用于神经体系结构搜索的操作贡献(Shapley-NAS)。可区分的体系结构搜索(DARTS)通过用梯度下降优化体系结构参数来获取最佳体系结构,从而大大降低了搜索成本。但是,梯度下降更新的体系结构参数的大小无法揭示对任务性能的实际操作重要性,因此损害了获得的体系结构的有效性。相比之下,我们建议评估操作对验证准确性的直接影响。为了处理超级网络组件之间的复杂关系,我们通过考虑所有可能的组合来利用Shapley的价值来量化其边际贡献。具体来说,我们通过Shapley值评估操作贡献来迭代优化超级网权并更新体系结构参数,从而通过选择对任务贡献显着贡献的操作来得出最佳体系结构。由于Shapley值的确切计算是NP-HARD,因此采用了基于蒙特卡罗的抽样算法,具有早期截断的算法来有效近似,并且采用了动量更新机制来减轻采样过程的波动。在各种数据集和各种搜索空间上进行的广泛实验表明,我们的Shapley-NAS的表现优于最先进的方法,并具有相当大的余量,而搜索成本则较小。该代码可从https://github.com/euphoria16/shapley-nas.git获得

In this paper, we propose a Shapley value based method to evaluate operation contribution (Shapley-NAS) for neural architecture search. Differentiable architecture search (DARTS) acquires the optimal architectures by optimizing the architecture parameters with gradient descent, which significantly reduces the search cost. However, the magnitude of architecture parameters updated by gradient descent fails to reveal the actual operation importance to the task performance and therefore harms the effectiveness of obtained architectures. By contrast, we propose to evaluate the direct influence of operations on validation accuracy. To deal with the complex relationships between supernet components, we leverage Shapley value to quantify their marginal contributions by considering all possible combinations. Specifically, we iteratively optimize the supernet weights and update the architecture parameters by evaluating operation contributions via Shapley value, so that the optimal architectures are derived by selecting the operations that contribute significantly to the tasks. Since the exact computation of Shapley value is NP-hard, the Monte-Carlo sampling based algorithm with early truncation is employed for efficient approximation, and the momentum update mechanism is adopted to alleviate fluctuation of the sampling process. Extensive experiments on various datasets and various search spaces show that our Shapley-NAS outperforms the state-of-the-art methods by a considerable margin with light search cost. The code is available at https://github.com/Euphoria16/Shapley-NAS.git

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源