论文标题

一种用于软聚类比较和评估的分布方法

A Distributional Approach for Soft Clustering Comparison and Evaluation

论文作者

Campagner, Andrea, Ciucci, Davide, Denœux, Thierry

论文摘要

软聚类(SC)的外部评估标准的发展已受到有限的关注:现有方法没有提供将比较度量扩展到SC的一般方法,并且无法说明SC算法结果中所代表的不确定性。在本文中,我们提出了一种解决这些局限性的一般方法,基于将SC作为硬聚类分布的新解释为基础,我们称之为\ emph {分布度量}。我们提供了对所提出方法的复杂性和度量理论特性的深入研究,并描述了可以使计算可进行的近似技术。最后,我们通过一个简单但说明性的实验来说明我们的方法。

The development of external evaluation criteria for soft clustering (SC) has received limited attention: existing methods do not provide a general approach to extend comparison measures to SC, and are unable to account for the uncertainty represented in the results of SC algorithms. In this article, we propose a general method to address these limitations, grounding on a novel interpretation of SC as distributions over hard clusterings, which we call \emph{distributional measures}. We provide an in-depth study of complexity- and metric-theoretic properties of the proposed approach, and we describe approximation techniques that can make the calculations tractable. Finally, we illustrate our approach through a simple but illustrative experiment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源