论文标题

元学习数字化 - 苏绝热量子优化

Meta-Learning Digitized-Counterdiabatic Quantum Optimization

论文作者

Chandarana, Pranav, Vieites, Pablo S., Hegade, Narendra N., Solano, Enrique, Ban, Yue, Chen, Xi

论文摘要

使用各种量子算法解决优化任务已成为当前噪声中间尺度量子设备的关键应用。但是,这些算法遇到了几个困难,例如找到合适的ANSATZ和适当的初始参数等。在这项工作中,我们通过使用复发性神经网络采用元学习技术来找到合适的初始参数以进行变分优化的问题。我们使用最近提出的数字化 - 苏联量子量子优化算法(DC-QAOA)研究了这一技术,该算法(DC-QAOA)利用反浸润协议来改善最新的QAOA。元学习和DC-QAOA的组合使我们能够找到不同模型的最佳初始参数,例如MaxCut问题和Sherrington-Kirkpatrick模型。减少优化的迭代次数并增强性能,我们的协议设计短深度回路ANSATZ具有最佳初始参数,通过将快捷方式到可结合性原理纳入近期设备的机器学习方法中。

Solving optimization tasks using variational quantum algorithms has emerged as a crucial application of the current noisy intermediate-scale quantum devices. However, these algorithms face several difficulties like finding suitable ansatz and appropriate initial parameters, among others. In this work, we tackle the problem of finding suitable initial parameters for variational optimization by employing a meta-learning technique using recurrent neural networks. We investigate this technique with the recently proposed digitized-counterdiabatic quantum approximate optimization algorithm (DC-QAOA) that utilizes counterdiabatic protocols to improve the state-of-the-art QAOA. The combination of meta learning and DC-QAOA enables us to find optimal initial parameters for different models, such as MaxCut problem and the Sherrington-Kirkpatrick model. Decreasing the number of iterations of optimization as well as enhancing the performance, our protocol designs short depth circuit ansatz with optimal initial parameters by incorporating shortcuts-to-adiabaticity principles into machine learning methods for the near-term devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源