论文标题

测试时间转换预测的开放集组织病理学图像识别

Test Time Transform Prediction for Open Set Histopathological Image Recognition

论文作者

Galdran, Adrian, Hewitt, Katherine J., Ghaffari, Narmin L., Kather, Jakob N., Carneiro, Gustavo, Ballester, Miguel A. González

论文摘要

整个幻灯片组织学图像中的组织类型学注释是一项复杂而乏味但繁琐但必要的任务,用于开发计算病理学模型。我们建议通过将开放式识别技术应用于共同分类属于一组带注释的类的组织的任务来解决这个问题。临床相关的组织类别,同时拒绝测试时间开放式样品,即属于训练集中不存在的类别的图像。为此,我们引入了一种基于训练模型的开放式组织病理图像识别的新方法,以准确识别图像类别,并同时预测已应用了哪些数据增强变换。在测试时间中,我们测量了模型的置信度预测这种转换,我们期望开放集中的图像较低。我们在组织学图像的结直肠癌评估的背景下进行了全面的实验,这些实验提供了我们方法的优势,以自动从未知类别中识别样本。代码在https://github.com/agaldran/t3po上发布。

Tissue typology annotation in Whole Slide histological images is a complex and tedious, yet necessary task for the development of computational pathology models. We propose to address this problem by applying Open Set Recognition techniques to the task of jointly classifying tissue that belongs to a set of annotated classes, e.g. clinically relevant tissue categories, while rejecting in test time Open Set samples, i.e. images that belong to categories not present in the training set. To this end, we introduce a new approach for Open Set histopathological image recognition based on training a model to accurately identify image categories and simultaneously predict which data augmentation transform has been applied. In test time, we measure model confidence in predicting this transform, which we expect to be lower for images in the Open Set. We carry out comprehensive experiments in the context of colorectal cancer assessment from histological images, which provide evidence on the strengths of our approach to automatically identify samples from unknown categories. Code is released at https://github.com/agaldran/t3po .

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源