论文标题
通过图表到序列模型预测停车场的可用性:与SmartSantander的案例研究
Predicting Parking Lot Availability by Graph-to-Sequence Model: A Case Study with SmartSantander
论文作者
论文摘要
如今,为了改善服务和城市地区的宜居性,全世界正在进行多个智能城市计划。 Smartsantander是西班牙桑坦德市的一个智能城市项目,该项目依靠无线传感器网络技术在城市内部部署异质传感器,以测量多个参数,包括户外停车信息。在本文中,我们使用SmartSantander的300多个户外停车传感器的历史数据研究了停车场可用性的预测。我们设计了一个图形模型,以捕获停车场的定期波动和地理位置。为了开发和评估我们的模型,我们使用了桑坦德市的3年停车场可用性数据集。与现有的序列到序列模型相比,我们的模型具有很高的精度,该模型足够准确,可以在城市提供停车信息服务。我们将模型应用于智能手机应用程序,以被公民和游客广泛使用。
Nowadays, so as to improve services and urban areas livability, multiple smart city initiatives are being carried out throughout the world. SmartSantander is a smart city project in Santander, Spain, which has relied on wireless sensor network technologies to deploy heterogeneous sensors within the city to measure multiple parameters, including outdoor parking information. In this paper, we study the prediction of parking lot availability using historical data from more than 300 outdoor parking sensors with SmartSantander. We design a graph-to-sequence model to capture the periodical fluctuation and geographical proximity of parking lots. For developing and evaluating our model, we use a 3-year dataset of parking lot availability in the city of Santander. Our model achieves a high accuracy compared with existing sequence-to-sequence models, which is accurate enough to provide a parking information service in the city. We apply our model to a smartphone application to be widely used by citizens and tourists.