论文标题
TCJA-SNN:峰值神经网络的时间通道关注
TCJA-SNN: Temporal-Channel Joint Attention for Spiking Neural Networks
论文作者
论文摘要
尖峰神经网络(SNN)由于其生物学合理性,能源效率和强大的时空信息表示能力而引起了广泛的兴趣。考虑到注意机制在增强神经网络性能中的关键作用,SNN和注意机制的整合表现出提供节能和高性能计算范式的潜力。我们提出了一种新型的SNN的时间通道关节注意机制,称为TCJA-SNN。提出的TCJA-SNN框架可以有效地评估来自空间和时间维度的峰值序列的重要性。更具体地说,我们的基本技术贡献在于:1)我们采用挤压操作将尖峰流压缩为平均矩阵。然后,我们利用基于有效的1D卷积的两种局部注意机制来独立地在时间和频道水平上促进全面的特征提取。 2)我们引入了交叉卷积融合(CCF)层,作为一种新的方法,是对时间范围和通道范围之间相互依存关系进行建模的一种新方法。该层打破了这两个维度的独立性,并实现了特征之间的相互作用。实验结果表明,所提出的TCJA-SNN在标准静态和神经形态数据集上的精度高达15.7%,包括Fashion-Mnist,CIFAR10-DVS,N-Caltech 101和DVS128。此外,我们通过利用变体自动编码器将TCJA-SNN框架应用于图像生成任务。据我们所知,这项研究是使用SNN注意机制用于图像分类和发电任务的第一案例。值得注意的是,我们的方法在两个领域都取得了SOTA的性能,并在该领域建立了重大进步。代码可在https://github.com/ridgerchu/tcja上找到。
Spiking Neural Networks (SNNs) are attracting widespread interest due to their biological plausibility, energy efficiency, and powerful spatio-temporal information representation ability. Given the critical role of attention mechanisms in enhancing neural network performance, the integration of SNNs and attention mechanisms exhibits potential to deliver energy-efficient and high-performance computing paradigms. We present a novel Temporal-Channel Joint Attention mechanism for SNNs, referred to as TCJA-SNN. The proposed TCJA-SNN framework can effectively assess the significance of spike sequence from both spatial and temporal dimensions. More specifically, our essential technical contribution lies on: 1) We employ the squeeze operation to compress the spike stream into an average matrix. Then, we leverage two local attention mechanisms based on efficient 1D convolutions to facilitate comprehensive feature extraction at the temporal and channel levels independently. 2) We introduce the Cross Convolutional Fusion (CCF) layer as a novel approach to model the inter-dependencies between the temporal and channel scopes. This layer breaks the independence of these two dimensions and enables the interaction between features. Experimental results demonstrate that the proposed TCJA-SNN outperforms SOTA by up to 15.7% accuracy on standard static and neuromorphic datasets, including Fashion-MNIST, CIFAR10-DVS, N-Caltech 101, and DVS128 Gesture. Furthermore, we apply the TCJA-SNN framework to image generation tasks by leveraging a variation autoencoder. To the best of our knowledge, this study is the first instance where the SNN-attention mechanism has been employed for image classification and generation tasks. Notably, our approach has achieved SOTA performance in both domains, establishing a significant advancement in the field. Codes are available at https://github.com/ridgerchu/TCJA.