论文标题

康利指数的拓扑推断

Topological Inference of the Conley Index

论文作者

Yim, Ka Man, Nanda, Vidit

论文摘要

一个孤立的不变集的Conley索引是动态系统研究中的基本对象。在这里,我们考虑在欧几里得空间的闭合子延伸物上的平滑功能,并描述一个框架,用于推断任何紧凑的,连接的,连接的隔离临界集合的conley索引,并从足够大的有限点样本中具有很高的信心。本文的主要结构是特定的索引对,它是有关关键集的本地索引对。我们确定这些索引对具有积极影响,因此接受了强大同源性推断的抽样理论。这使我们能够估算Conley指数,并且是直接的结果,我们还能够使用有限的许多局部评估来估算Morse函数的任何关键点的Morse索引。

The Conley index of an isolated invariant set is a fundamental object in the study of dynamical systems. Here we consider smooth functions on closed submanifolds of Euclidean space and describe a framework for inferring the Conley index of any compact, connected isolated critical set of such a function with high confidence from a sufficiently large finite point sample. The main construction of this paper is a specific index pair which is local to the critical set in question. We establish that these index pairs have positive reach and hence admit a sampling theory for robust homology inference. This allows us to estimate the Conley index, and as a direct consequence, we are also able to estimate the Morse index of any critical point of a Morse function using finitely many local evaluations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源