论文标题

优化随机高维函数:结构和算法

Optimization of random high-dimensional functions: Structure and algorithms

论文作者

Auffinger, Antonio, Montanari, Andrea, Subag, Eliran

论文摘要

副本对称性打破了假设,即旋转玻璃哈密顿量接近最佳的具有超级结构。也就是说,在Optima附近可以与树的叶子相关联,它们之间的欧几里得距离对应于沿着这棵树的距离。我们调查了在混合$ p $ spin旋转玻璃型号的背景下,对这张照片进行严格证明的最新进展。我们尤其关注以下主题:$(i)$〜哈密顿人关键点的结构; $(ii)$〜实现超级树作为合适的自由能的最佳选择; $(iii)$〜利用此图片的有效优化算法的构建。

Replica symmetry breaking postulates that near optima of spin glass Hamiltonians have an ultrametric structure. Namely, near optima can be associated to leaves of a tree, and the Euclidean distance between them corresponds to the distance along this tree. We survey recent progress towards a rigorous proof of this picture in the context of mixed $p$-spin spin glass models. We focus in particular on the following topics: $(i)$~The structure of critical points of the Hamiltonian; $(ii)$~The realization of the ultrametric tree as near optima of a suitable TAP free energy; $(iii)$~The construction of efficient optimization algorithm that exploits this picture.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源