论文标题

私有:一种用于逐步收集位置数据的隐私方法

PRIVIC: A privacy-preserving method for incremental collection of location data

论文作者

Biswas, Sayan, Palamidessi, Catuscia

论文摘要

随着技术的最新进展,侵犯个人敏感数据的隐私侵犯的威胁正在激增。尤其是位置数据已显示出大量敏感信息。一种减轻位置数据隐私风险的标准方法是为真实值添加噪声以实现地理位置可区分性(Geo-Ind)。但是,仅GEO-IND不足以涵盖所有隐私问题。特别是,孤立的位置不受地理位置的最先进的拉普拉斯机构(LAP)的充分保护。在本文中,我们关注基于速率理论的基于Blahut-Arimoto算法(BA)的机制。我们表明,除了提供地理位置外,BA还强制执行缓解隔离问题的弹性度量。此外,BA在信息泄漏和服务质量之间提供了最佳的权衡。然后,我们继续研究BA的效用,从报告的数据中得出的统计数据,重点是原始分布的推断。为此,我们通过应用迭代贝叶斯更新(IBU)来删除报告的数据,这是期望最大化方法的实例。事实证明,BA和IBU彼此双重,因此,它们可以很好地合作,从某种意义上说,BA的统计效用非常好,而且在高隐私水平方面比LAP更好。利用BA和IBU的这些属性,我们提出了一种迭代方法,即Privic,以通过服务提供商从用户那里从用户那里收集隐私友好型的位置数据。我们通过分析和实验说明了方法的健全性和功能。

With recent advancements in technology, the threats of privacy violations of individuals' sensitive data are surging. Location data, in particular, have been shown to carry a substantial amount of sensitive information. A standard method to mitigate the privacy risks for location data consists in adding noise to the true values to achieve geo-indistinguishability (geo-ind). However, geo-ind alone is not sufficient to cover all privacy concerns. In particular, isolated locations are not sufficiently protected by the state-of-the-art Laplace mechanism (LAP) for geo-ind. In this paper, we focus on a mechanism based on the Blahut-Arimoto algorithm (BA) from the rate-distortion theory. We show that BA, in addition to providing geo-ind, enforces an elastic metric that mitigates the problem of isolation. Furthermore, BA provides an optimal trade-off between information leakage and quality of service. We then proceed to study the utility of BA in terms of the statistics that can be derived from the reported data, focusing on the inference of the original distribution. To this purpose, we de-noise the reported data by applying the iterative Bayesian update (IBU), an instance of the expectation-maximization method. It turns out that BA and IBU are dual to each other, and as a result, they work well together, in the sense that the statistical utility of BA is quite good and better than LAP for high privacy levels. Exploiting these properties of BA and IBU, we propose an iterative method, PRIVIC, for a privacy-friendly incremental collection of location data from users by service providers. We illustrate the soundness and functionality of our method both analytically and with experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源