论文标题
HealNet-自我监管的急性伤口治愈阶段分类
HealNet -- Self-Supervised Acute Wound Heal-Stage Classification
论文作者
论文摘要
识别,跟踪和预测伤口愈合阶段的进展是正确诊断,有效治疗,促进愈合和减轻疼痛的基本任务。传统上,医学专家可能会观察到伤口,以确定当前的愈合状态并建议治疗。但是,可以从视觉指标中产生这样的诊断的专家可能很困难,耗时且昂贵。此外,病变可能需要数周的时间才能进行康复过程,要求资源不断监测和诊断。自动执行此任务可能具有挑战性;遵循从发作到成熟的伤口进展的数据集很小,很少,并且经常在没有计算机视觉的情况下收集。为了应对这些挑战,我们引入了一种自我监督的学习计划,该计划由(a)学习伤口的时间动态的学习嵌入,(b)自动阶段发现的聚类以及(c)微调分类。拟议的自我监督和灵活的学习框架是在生物学上启发和培训的,并在人类标签为零的小数据集上进行了培训。 HealNet框架达到了高文本和下游分类精度。当对持有的测试数据进行评估时,HealNet获得了97.7%的文本准确性和90.62%的愈合阶段分类精度。
Identifying, tracking, and predicting wound heal-stage progression is a fundamental task towards proper diagnosis, effective treatment, facilitating healing, and reducing pain. Traditionally, a medical expert might observe a wound to determine the current healing state and recommend treatment. However, sourcing experts who can produce such a diagnosis solely from visual indicators can be difficult, time-consuming and expensive. In addition, lesions may take several weeks to undergo the healing process, demanding resources to monitor and diagnose continually. Automating this task can be challenging; datasets that follow wound progression from onset to maturation are small, rare, and often collected without computer vision in mind. To tackle these challenges, we introduce a self-supervised learning scheme composed of (a) learning embeddings of wound's temporal dynamics, (b) clustering for automatic stage discovery, and (c) fine-tuned classification. The proposed self-supervised and flexible learning framework is biologically inspired and trained on a small dataset with zero human labeling. The HealNet framework achieved high pre-text and downstream classification accuracy; when evaluated on held-out test data, HealNet achieved 97.7% pre-text accuracy and 90.62% heal-stage classification accuracy.