论文标题
平均时间对称莫伊尔光学晶格中的间隙孤子
Gap solitons in parity-time symmetric moiré optical lattices
论文作者
论文摘要
在控制波流方面已经广泛研究了平均时间(PT)对称晶格,最近引入了Moiré超级晶格,连接了周期性和非周期性电位,用于探索物理中非常规物理特性。而其中的非线性波的组合尚不清楚。在这里,我们报告了PT对称Moiré光学晶格中非线性波定位的理论调查,目的是揭示不同类型的局部间隙模式及其稳定机制。我们揭示了基本和高级缝隙孤子的形成,特性和动力学以及具有拓扑电荷的涡流,所有这些都位于基础线性线性波波谱的有限带隙中。局部间隙模式的稳定区域以两种数值方式进行了检查:线性稳定性分析和直接扰动模拟。我们的结果为PT对称系统和Moiré模式的多功能平台中的孤子物理学提供了深刻的了解。
Parity-time(PT) symmetric lattices have been widely studied in controlling the flow of waves, and recently moiré superlattices, connecting the periodic and non-periodic potentials, are introduced for exploring unconventional physical properties in physics; while the combination of both and nonlinear waves therein remains unclear. Here, we report a theoretical survey of nonlinear wave localizations in PT symmetric moiré optical lattices, with the aim of revealing localized gap modes of different types and their stabilization mechanism. We uncover the formation, properties, and dynamics of fundamental and higherorder gap solitons as well as vortical ones with topological charge, all residing in the finite band gaps of the underlying linear-Bloch wave spectrum. The stability regions of the localized gap modes are inspected in two numerical ways: linear-stability analysis and direct perturbed simulations. Our results provide an insightful understanding of solitons physics in combined versatile platforms of PT symmetric systems and moiré patterns.