论文标题

模因受欢迎的网络模型的扩散近似

Diffusion approximation of a network model of meme popularity

论文作者

Oliveira, Kleber A., Unicomb, Samuel, Gleeson, James P.

论文摘要

模因在模因竞争有限的用户关注的社交网络上的模型传播模型可以成功地重现在线环境中观察到的重型流行性分布。尽管已经通过分析得出了整体范围的流行度分布,但到目前为止,各个模因轨迹的动态已经逃避了描述。为了解决这个问题,我们将给定模因的扩散作为一维随机过程,其波动是由于使用经典和广义的中心限制定理汇总局部网络动力学而导致的,后者基于稳定的分布理论。最终,我们的方法将竞争性模因的轨迹解散,从而使它们独立模拟,因此并行并以Fokker-Planck方程式表示。

Models of meme propagation on social networks, in which memes compete for limited user attention, can successfully reproduce the heavy-tailed popularity distributions observed in online settings. While system-wide popularity distributions have been derived analytically, the dynamics of individual meme trajectories have thus far evaded description. To address this, we formulate the diffusion of a given meme as a one-dimensional stochastic process, whose fluctuations result from aggregating local network dynamics using classic and generalised central limit theorems, with the latter based on stable distribution theory. Ultimately, our approach decouples competing trajectories of meme popularities, allowing them to be simulated independently, and thus parallelised, and expressed in terms of Fokker-Planck equations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源