论文标题

S2RL:我们是否真的需要感知深层增强学习中的所有州?

S2RL: Do We Really Need to Perceive All States in Deep Multi-Agent Reinforcement Learning?

论文作者

Luo, Shuang, Li, Yinchuan, Li, Jiahui, Kuang, Kun, Liu, Furui, Shao, Yunfeng, Wu, Chao

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Collaborative multi-agent reinforcement learning (MARL) has been widely used in many practical applications, where each agent makes a decision based on its own observation. Most mainstream methods treat each local observation as an entirety when modeling the decentralized local utility functions. However, they ignore the fact that local observation information can be further divided into several entities, and only part of the entities is helpful to model inference. Moreover, the importance of different entities may change over time. To improve the performance of decentralized policies, the attention mechanism is used to capture features of local information. Nevertheless, existing attention models rely on dense fully connected graphs and cannot better perceive important states. To this end, we propose a sparse state based MARL (S2RL) framework, which utilizes a sparse attention mechanism to discard irrelevant information in local observations. The local utility functions are estimated through the self-attention and sparse attention mechanisms separately, then are combined into a standard joint value function and auxiliary joint value function in the central critic. We design the S2RL framework as a plug-and-play module, making it general enough to be applied to various methods. Extensive experiments on StarCraft II show that S2RL can significantly improve the performance of many state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源