论文标题
变异因果动力学:从干预措施中发现模块化世界模型
Variational Causal Dynamics: Discovering Modular World Models from Interventions
论文作者
论文摘要
潜在的世界模型使代理商可以对具有高维度观察的复杂环境进行推理。但是,适应新环境并有效利用先前的知识仍然是重大挑战。我们提出了变异因果动力学(VCD),这是一种结构化的世界模型,可利用跨环境的因果机制的不变性,以实现快速和模块化的适应性。通过因果分解过渡模型,VCD能够在不同环境中识别可重复使用的组件。这是通过结合因果发现和变异推断来实现的,以无监督的方式共同学习潜在的表示和过渡模型。具体而言,我们在表示模型和作为因果图形模型结构的过渡模型上优化了较低限制的证据。在对具有状态和图像观察的模拟环境的评估中,我们表明VCD能够成功识别因果变量,并在不同环境中发现一致的因果结构。此外,鉴于在以前看不见的中间环境中进行了少量观察,VCD能够识别动力学的稀疏变化并有效地适应。在此过程中,VCD显着扩展了潜在世界模型中最新的当前功能,同时在预测准确性方面也可以很好地比较。
Latent world models allow agents to reason about complex environments with high-dimensional observations. However, adapting to new environments and effectively leveraging previous knowledge remain significant challenges. We present variational causal dynamics (VCD), a structured world model that exploits the invariance of causal mechanisms across environments to achieve fast and modular adaptation. By causally factorising a transition model, VCD is able to identify reusable components across different environments. This is achieved by combining causal discovery and variational inference to learn a latent representation and transition model jointly in an unsupervised manner. Specifically, we optimise the evidence lower bound jointly over a representation model and a transition model structured as a causal graphical model. In evaluations on simulated environments with state and image observations, we show that VCD is able to successfully identify causal variables, and to discover consistent causal structures across different environments. Moreover, given a small number of observations in a previously unseen, intervened environment, VCD is able to identify the sparse changes in the dynamics and to adapt efficiently. In doing so, VCD significantly extends the capabilities of the current state-of-the-art in latent world models while also comparing favourably in terms of prediction accuracy.