论文标题
使用Codebook查找变压器进行健壮的盲面修复
Towards Robust Blind Face Restoration with Codebook Lookup Transformer
论文作者
论文摘要
盲人的恢复是一个高度不足的问题,通常需要辅助指导到1)从降级输入到所需的输出改善映射,或者2)在输入中丢失的补充高质量细节。在本文中,我们证明了在一个较小的代理空间中的一本学到的离散代码书在很大程度上降低了恢复映射的不确定性和模棱两可,通过将盲面修复作为代码预测任务,同时为产生高质量的面孔提供丰富的视觉原子。在此范式下,我们提出了一个名为CodeFormer的基于变压器的预测网络,以建模代码预测的低质量面孔的全局组成和上下文,从而可以发现即使输入严重降级,也可以发现自然面部,即使输入严重降低了目标面孔。为了增强不同降解的适应性,我们还提出了一个可控的特征转换模块,该模块可以在忠诚度和质量之间进行灵活的权衡。多亏了表达的代码书的先验和全球建模,CodeFormer的质量和忠诚度都优于艺术状态,从而表现出较高的降级性。关于合成和现实数据集的广泛实验结果验证了我们方法的有效性。
Blind face restoration is a highly ill-posed problem that often requires auxiliary guidance to 1) improve the mapping from degraded inputs to desired outputs, or 2) complement high-quality details lost in the inputs. In this paper, we demonstrate that a learned discrete codebook prior in a small proxy space largely reduces the uncertainty and ambiguity of restoration mapping by casting blind face restoration as a code prediction task, while providing rich visual atoms for generating high-quality faces. Under this paradigm, we propose a Transformer-based prediction network, named CodeFormer, to model the global composition and context of the low-quality faces for code prediction, enabling the discovery of natural faces that closely approximate the target faces even when the inputs are severely degraded. To enhance the adaptiveness for different degradation, we also propose a controllable feature transformation module that allows a flexible trade-off between fidelity and quality. Thanks to the expressive codebook prior and global modeling, CodeFormer outperforms the state of the arts in both quality and fidelity, showing superior robustness to degradation. Extensive experimental results on synthetic and real-world datasets verify the effectiveness of our method.