论文标题
Chandra,HST/STIS,NICER,SWIFT和TESS详细介绍了重复的核瞬态ASASSN-14KO的耀斑演变
Chandra, HST/STIS, NICER, Swift, and TESS Detail the Flare Evolution of the Repeating Nuclear Transient ASASSN-14ko
论文作者
论文摘要
Asassn-14KO是AGN ESO 253-G003中心的核瞬变,它发生了周期性的耀斑。 2014年首次观察到了Supernovae(ASAS-SN)的All-Sky自动化调查,其高峰时间经过良好的模型,其周期为$ 115.2^{+1.3} _ { - 1.2} $ days $ days $ -0.0026 \ $ -0.0026 \ pm pm pm 0.0006 $。在这里,我们介绍了ASAS-SN,Chandra,HST/STIS,MICER,SWIFT和TESS数据,用于2020年12月,2021年4月,2021年4月,2021年7月和2021年11月的耀斑。HST/STIS UV光谱从Blue Shift the Shift from the Blue Shift the Shift of Shipt of Sim $ \ sim blud Shifted Broad Shipts of Sim \ sim \ sim $ \ sim blod Shift theed the。 Swift UV/光学曲线峰值达到了正时模型的预测,但是2021年7月的耀斑和紫外线之间的峰紫外线亮度大约是所有其他峰的亮度的一半。 X射线照明量始终降低,光谱在紫外/光学上升期间变得更难,但显然没有吸收而没有变化。最后,从2020年12月和2018年11月开始的两条高效力苔丝光曲线表明,随着时间的推移,阶段上升和阶段下降的斜率发生了变化,这表明耀斑的驾驶机制有些随机性。 Asassn-14KO在观察方面与重复的部分潮汐破坏事件保持一致,但是这些丰富的多波长数据需要详细的理论模型。
ASASSN-14ko is a nuclear transient at the center of the AGN ESO 253-G003 that undergoes periodic flares. Optical flares were first observed in 2014 by the All-Sky Automated Survey for Supernovae (ASAS-SN) and their peak times are well-modeled with a period of $115.2^{+1.3}_{-1.2}$ days and period derivative of $-0.0026 \pm 0.0006$. Here we present ASAS-SN, Chandra, HST/STIS, NICER, Swift, and TESS data for the flares that occurred in December 2020, April 2021, July 2021, and November 2021. The HST/STIS UV spectra evolve from blue shifted broad absorption features to red shifted broad emission features over $\sim$10 days. The Swift UV/optical light curves peaked as predicted by the timing model, but the peak UV luminosities varied between flares and the UV flux in July 2021 was roughly half the brightness of all other peaks. The X-ray luminosities consistently decreased and the spectra became harder during the UV/optical rise but apparently without changes in absorption. Finally, two high-cadence TESS light curves from December 2020 and November 2018 showed that the slopes during the rising and declining phases changed over time, which indicates some stochasticity in the flare's driving mechanism. ASASSN-14ko remains observationally consistent with a repeating partial tidal disruption event, but, these rich multi-wavelength data are in need of a detailed theoretical model.