论文标题

Minkowski时空的环校正远离平衡。第一部分。

Loop corrections in Minkowski spacetime away from equilibrium. Part I. Late-time resummations

论文作者

Chaykov, Spasen, Agarwal, Nishant, Bahrami, Sina, Holman, R.

论文摘要

由于时间依赖性扰动理论的分解,Minkowski时空中对不等时间相关函数的循环校正表现出了世俗的生长。这类似于在时间依赖性背景下等级相关因子中的世俗增长,除了在Minkowski中,分歧不得信号。在本文中,我们计算了Minkowski背景上不同无质量自我相互作用标量量子场理论的两点相关器的延迟限制。我们首先在自由理论的真空中使用了内在路径积分的延迟版本。在此限制下,包括紫外线重归其化在内的计算将降低到In-In In In In In In In。我们发现时间上的线性或对数增长,具体取决于相互作用强度分别是尺寸 - 一个或无量纲的。接下来,我们开发了Weisskopf-wigner重新召集方法,该方法是通过要求在截短的Hilbert空间内进行单位性来进行的,以计算重新召集的相关器,并发现它给出了晚期扰动结果的确切启动。因此,重新召集的(不等式的)相关器会以指数或多项式的时间依赖性衰减,这暗示着取决于相互作用强度的维度的“通用”行为。

Loop corrections to unequal-time correlation functions in Minkowski spacetime exhibit secular growth due to a breakdown of time-dependent perturbation theory. This is analogous to secular growth in equal-time correlators on time-dependent backgrounds, except that in Minkowski the divergences must not signal a real IR issue. In this paper, we calculate the late-time limit of the two-point correlator for different massless self-interacting scalar quantum field theories on a Minkowski background. We first use a late-time version of the in-in path integral starting in the vacuum of the free theory; in this limit, the calculation, including UV renormalization, reduces to that in in-out. We find linear or logarithmic growth in time, depending on whether the interaction strength is dimension-one or dimensionless, respectively. We next develop the Weisskopf-Wigner resummation method, that proceeds by demanding unitarity within a truncated Hilbert space, to calculate the resummed correlator and find that it gives an exact exponentiation of the late-time perturbative result. The resummed (unequal-time) correlator thus decays with an exponential or polynomial time-dependence, which is suggestive of `universal' behavior that depends on the dimensions of the interaction strength.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源