论文标题
附近的微透镜恒星残留物隐藏在Gaia DR3天文学中吗?
Is there a nearby microlensing stellar remnant hiding in Gaia DR3 astrometry?
论文作者
论文摘要
具有较大爱因斯坦半径的大型银河镜片应引起可测量的星形微透镜效应,即由于两个图像的运动而引起的光中心体移位。由于$ GAIA $ ASTORTORIC模型,由于微透明而导致的背景恒星位置的这种转变,因此明显的偏差应导致$ Gaia $的Astromentric参数错误地确定。在这里,我们研究了$ GAIA $ DR3(GAIADR3-ULENS-001)中报道的一项光度微化事件,其中$ Gaia $ fit的差差和错误的视差可能表明存在astrostrotric微透镜信号。基于光度测定模型,我们模拟了$ GAIA $ ASTRETRITRIC时间序列,并添加了Astretric微透镜效果。我们发现,包括用$θ_ {\ rm e} $ = $ 2.60^{+0.21} _ { - 0.24} $ mas($ 2.47^{+0.28} _ { - 0.24} _ { - 0.24} $ mas)的$ _ $ uncortode $ uncortode $ undeceptair partime $ ud _0 $ undecectaime的$θ_{\ rm e} $ = $ 2.60^{+0.28} _ { - 0.24} $ sundite $ undere($ 2.47^)假定$ _ $ ud _0 $ 10 $ GAIA $。我们将镜头的质量估计为$ 1.00^{+0.23} _ { - 0.18} $ $ $ $ m_ \ odot $($ 0.70^{+0.17} _ { - 0.13} $ $ $ m_ \ odot $),距离$ 0.90^{+0.90^{+0.14^{+0.14} $ 0.11 ($ 0.69^{+0.13} _ { - 0.09} $ kpc),提出镜头可能是附近的隔离白矮人。
Massive galactic lenses with large Einstein Radii should cause a measurable astrometric microlensing effect, i.e. the light centroid shift due to the motion of the two images. Such a shift in the position of a background star due to microlensing was not included in the $Gaia$ astrometric model, therefore significant deviation should cause $Gaia$'s astrometric parameters to be determined incorrectly. Here we studied one of the photometric microlensing events reported in the $Gaia$ DR3, GaiaDR3-ULENS-001, for which poor goodness of $Gaia$ fit and erroneous parallax could indicate the presence of the astrometric microlensing signal. Based on the photometric microlensing model, we simulated $Gaia$ astrometric time-series with the astrometric microlensing effect added. We found that including microlensing with the angular Einstein Radius of $θ_{\rm E}$ = $2.60^{+0.21}_{-0.24}$ mas ($2.47^{+0.28}_{-0.24}$ mas) assuming positive (negative) impact parameter $u_0$ reproduces well the astrometric quantitie reported by $Gaia$. We estimate the mass of the lens to $1.00^{+0.23}_{-0.18}$ $M_\odot$ ($0.70^{+0.17}_{-0.13}$ $M_\odot$) and its distance to $0.90^{+0.14}_{-0.11}$ kpc ($0.69^{+0.13}_{-0.09}$ kpc), proposing the lens could be a nearby isolated white dwarf.