论文标题
从广泛的神经影像数据中对大脑动力学的自我监督学习
Self-Supervised Learning of Brain Dynamics from Broad Neuroimaging Data
论文作者
论文摘要
自我监督的学习技术通过使模型能够以前所未有的量表从广泛的语言数据中学习,从而庆祝自然语言处理(NLP)的巨大成功。在这里,我们旨在利用这些技术在精神状态解码方面的成功,研究人员旨在从大脑活动中确定特定的精神状态(例如,愤怒或喜悦的经历)。为此,我们设计了一套新颖的自我监督学习框架,用于由NLP中突出的学习框架启发的神经影像学数据。这些框架在其核心上,通过建模类似于在NLP中对文本序列进行建模的活动序列来了解大脑活动的动力学。我们通过在跨越功能性磁共振成像数据的广泛神经成像数据集上进行预训练模型来评估框架,从34个数据集中的11,980次实验运行中的1,726个个体的实验运行,然后将预培养的模型适应基准的精神状态解码数据集。预先训练的模型转移良好,通常优于从头开始训练的基线模型,而在基于因果语言建模的学习框架中训练的模型明显优于其他模型。
Self-supervised learning techniques are celebrating immense success in natural language processing (NLP) by enabling models to learn from broad language data at unprecedented scales. Here, we aim to leverage the success of these techniques for mental state decoding, where researchers aim to identify specific mental states (e.g., the experience of anger or joy) from brain activity. To this end, we devise a set of novel self-supervised learning frameworks for neuroimaging data inspired by prominent learning frameworks in NLP. At their core, these frameworks learn the dynamics of brain activity by modeling sequences of activity akin to how sequences of text are modeled in NLP. We evaluate the frameworks by pre-training models on a broad neuroimaging dataset spanning functional Magnetic Resonance Imaging data from 11,980 experimental runs of 1,726 individuals across 34 datasets, and subsequently adapting the pre-trained models to benchmark mental state decoding datasets. The pre-trained models transfer well, generally outperforming baseline models trained from scratch, while models trained in a learning framework based on causal language modeling clearly outperform the others.