论文标题
在li-rich li $ _5 $ feo $ _4 $中抑制初始容量淡入淡出的容量,而部分CO替换为阴离子氧化还原
Suppressing initial capacity fade in Li-rich Li$_5$FeO$_4$ with anionic redox by partial Co substitution
论文作者
论文摘要
储能技术的相关性越来越多,需要对锂离子电池的高容量阴极材料。最近,Li-Rich的缺陷抗氟li $ _5 $ _4 $ $ _4 $已成为一种高容量的阴极材料,表现出同时呈阴离子和阳离子氧化还原,而没有明显的氧气释放。但是,骑自行车期间的结构变化不可逆转,容量逐渐消失。在此,我们调查了CO取代的Li $ _5 $ _4 $中报道的抑制能力褪色,并通过调整Co的浓度和氧化状态来建立最佳性能。我们在FE网站上替换了CO,并对使用第一分化的结构,磁性,磁性,电子和电化学进行了详细的分析,并对使用第一分化的结构,磁性,电子和电化学进行了使用。扩展的稳定性和抑制能力褪色仅在特定组合物中,具体取决于CO/LI浓度和CO的氧化状态。CO替代系统中抑制能力褪色背后的原因是根据粘结分析的基础公布的,并提议作为一种抑制液化材料抑制液化材料的电压延伸的策略。从热力学稳定性和电子结构的评估中,李$ _ {5.5} $ fe $ _ {0.5} $ co $ _ {0.5} $ o $ _4 $,li $ _5 $ _5 $ _5 $ _f $ _ {0.25}李$ _ {4.5} $ fe $ _ {0.5} $ co $ _ {0.5} $ o $ _4 $比li $ _5 $ _5 $ feo $ _4 $显示出更好的电导率。所有这些系统的电压在3至5 V范围内,并且显示三维LI扩散途径,扩散屏障高度约为0.3 eV。从李$ _5 $ fe $ _ {0.25} $ co $ _ {0.75} $ o $ _4 $,一个人可以将三个li-ives归咎于没有结构性变化和氧气释放,因此预计将获得约513 mah/g的可逆容量。此外,与原始的li $ _5 $ feo $ _4 $一样,所选的CO替代系统也表现出同时的阴离子和阳离子氧化还原,而无需大量O2释放。
The increasing relevance of energy storage technologies demands high-capacity cathode materials for Li-ion batteries. Recently, Li-rich defect anti-fluorite Li$_5$FeO$_4$ has emerged as a high-capacity cathode material exhibiting simultaneous anionic and cationic redox without significant oxygen release. But suffers from irreversible structural change and capacity fade during cycling. Herein we investigate the suppressed capacity fade reported in Co substituted Li$_5$FeO$_4$ and establish the optimal performance through tuning the concentration and oxidation state of Co. We have substituted Co at the Fe site and carried out a detailed analysis of structural, magnetic, electronic, and electrochemical properties using first-principles density functional theory calculations. The extended stability and suppressed capacity fading are found only in specific compositions depending on the Co/Li concentration and the oxidation state of Co. The reasons behind suppressed capacity fading in Co substituted systems have been unveiled on the basis of bonding analyses and proposed as a strategy to suppress the voltage fading reported in Li-rich materials due to transition metal migration. From the evaluation of thermodynamic stability and electronic structure, Li$_{5.5}$Fe$_{0.5}$Co$_{0.5}$O$_4$, Li$_5$Fe$_{0.25}$Co$_{0.75}$O$_4$, and Li$_{4.5}$Fe$_{0.5}$Co$_{0.5}$O$_4$ are found to exhibit better electrical conductivity than Li$_5$FeO$_4$. All these systems have voltage in the range of 3 to 5 V and exhibit three dimensional Li diffusion pathway with a diffusion barrier height of around 0.3 eV. From Li$_5$Fe$_{0.25}$Co$_{0.75}$O$_4$, one can delithiate three Li-ions without structural change and oxygen release, therefore expected to acquire a reversible capacity of around 513 mAh/g. Moreover, as in pristine Li$_5$FeO$_4$, the selected Co substituted systems also exhibit simultaneous anionic and cationic redox without significant O2 release.