论文标题
具有任意状态方程式的高速跨临界流的适应性原始保守方案
An adaptive primitive-conservative scheme for high speed transcritical flow with an arbitrary equation of state
论文作者
论文摘要
当使用完全保守的方法来模拟跨临界流时,会产生虚假压力振荡和数值不稳定。不能使用半保守或原始方法正确表示冲击波传播的强度和速度。在这项研究中,一种自适应原始保守性方案旨在克服上述两个困难。在有限体积方法(FVM)的框架内分析了压力振荡的根本原因。我们发现,跨临界流体的热力学特性的非线性使标准保守数值方法无效。在平滑区域中,基于原始变量的方案用于消除虚假压力振荡。为了正确捕获冲击波,用于真实流体的修改后的Roe Riemann求解器被用于冲击波诱发不连续性的区域。自适应数值方法仅取决于声音的速度,从而消除了计算热力学量导数的要求。在一维空间和二维空间中进行的大量数值测试案例显示了用于模拟高速跨越临界流的拟议自适应方案的鲁棒性和准确性。
When fully conservative methods are used to simulate transcritical flow, spurious pressure oscillations and numerical instability are generated. The strength and speed of propagation of shock waves cannot be represented correctly using a semi-conservative or primitive method. In this research, an adaptive primitive-conservative scheme is designed to overcome the aforesaid two difficulties. The underlying cause for pressure oscillation is analyzed within the framework of Finite Volume Method (FVM). We found that the nonlinearity of the thermodynamic properties of transcritical fluids renders standard conservative numerical methods ineffective. In smooth regions, schemes based on primitive variable are used to eliminate spurious pressure oscillations. For the purpose of correctly capturing shock waves, the modified Roe Riemann solver for real fluid is utilized in regions where shock waves induce discontinuity. The adaptive numerical approach relies only on the speed of sound, eliminating the requirement to calculate the derivatives of thermodynamic quantities. A large number of numerical test cases conducted in one- and two-dimensional spaces have shown the robustness and accuracy of the proposed adaptive scheme for the simulations of high speed transcritical flows.