论文标题
$ p^m- $主要元素的Artin-Hasse公式
Artin-Hasse formula for $p^m-$primary elements
论文作者
论文摘要
使用Borevich的发电机和关系系统,在采用希尔伯特符号的第二个论点的$ p $ th的情况下,从头开始获得经典的Artin-Hasse公式。在相同的假设下,对于lubin-tate正式群体,希尔伯特符号的表达是根据相同的发电机系统扩展元素的。
Using Borevich's system of generators and relations, the classical Artin-Hasse formula is obtained from scratch in the case when taking $p$-th root of the second argument of the Hilbert symbol gives an unramified $p$-extension of the same degree of irregularity. Under the same assumptions, in the case of Lubin-Tate formal groups, an expression for the Hilbert symbol is obtained in terms of the expansion of elements by the same system of generators.