论文标题

Fitgan:时尚的适合和形状现实的生成对抗网络

FitGAN: Fit- and Shape-Realistic Generative Adversarial Networks for Fashion

论文作者

Pecenakova, Sonia, Karessli, Nour, Shirvany, Reza

论文摘要

在时尚电子商务的迅速增长中,远程时尚文章的远程安装仍然是一个复杂而挑战性的问题,也是客户沮丧的主要驱动力。尽管最近在3D虚拟试验解决方案方面取得了进步,但这种方法仍然限制在非常狭窄的文章(如果不仅是少数文章)中,通常只有这些时尚物品中的一种。旨在支持客户的其他最先进的方法在网上找到适合他们的方法,主要需要高水平的客户参与度和对隐私敏感的数据(例如身高,体重,年龄,性别,腹部形状等),或者需要穿着紧身服装的客户尸体的图像。他们通常还缺乏在大规模上产生合适和塑造视觉指导的能力,仅通过建议订购的尺寸即可达到最短的订单,以最能与客户的身体属性相匹配,而无需提供有关服装如何合适和外观的任何信息。为了实现飞跃并超越当前方法的局限性,我们提出了Fitgan,这是一种生成性的对抗模型,可以明确说明服装的纠缠尺寸和在线时尚的适合特征。我们的模型以文章的拟合和形状为条件,学习了分离的项目表示形式,并生成了逼真的图像,以反映时尚文章的真实拟合和形状。通过大规模实验对现实世界数据的实验,我们演示了我们的方法如何能够综合视觉上现实和多样化的时尚项目,并探索其控制数千种在线服装图像的拟合度和形状的能力。

Amidst the rapid growth of fashion e-commerce, remote fitting of fashion articles remains a complex and challenging problem and a main driver of customers' frustration. Despite the recent advances in 3D virtual try-on solutions, such approaches still remain limited to a very narrow - if not only a handful - selection of articles, and often for only one size of those fashion items. Other state-of-the-art approaches that aim to support customers find what fits them online mostly require a high level of customer engagement and privacy-sensitive data (such as height, weight, age, gender, belly shape, etc.), or alternatively need images of customers' bodies in tight clothing. They also often lack the ability to produce fit and shape aware visual guidance at scale, coming up short by simply advising which size to order that would best match a customer's physical body attributes, without providing any information on how the garment may fit and look. Contributing towards taking a leap forward and surpassing the limitations of current approaches, we present FitGAN, a generative adversarial model that explicitly accounts for garments' entangled size and fit characteristics of online fashion at scale. Conditioned on the fit and shape of the articles, our model learns disentangled item representations and generates realistic images reflecting the true fit and shape properties of fashion articles. Through experiments on real world data at scale, we demonstrate how our approach is capable of synthesizing visually realistic and diverse fits of fashion items and explore its ability to control fit and shape of images for thousands of online garments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源