论文标题
概率具有弹性的多机器人信息通知路径计划
Probabilistically Resilient Multi-Robot Informative Path Planning
论文作者
论文摘要
在本文中,我们在不确定的沟通和对抗性攻击者的影响下解决了多机器人的信息路径计划(MIPP)任务。目的是创建一个多机器人系统,尽管存在损坏的机器人共享恶意信息,但仍可以学习并统一其对未知环境的知识。我们使用高斯工艺(GP)来对未知环境进行建模,并使用相互信息的度量来定义信息。我们MIPP任务的目标是最大程度地提高团队收集的信息量,同时最大程度地提高弹性弹性的可能性。不幸的是,这些目标是矛盾的,尤其是在探索需要在机器人之间断开连接的大环境时。结果,我们强加了概率的通信约束,该概率可以使机器人间歇性地满足和弹性地共享信息,然后在所有其他时间内采取行动以最大程度地提高收集的信息。为了解决我们的问题,我们选择具有最高弹性概率的会议位置,并使用顺序贪婪算法来优化机器人探索的路径。最后,我们通过比较应用弹性和非弹性MIPP算法的良好行为机器人的学习能力来展示结果的有效性。
In this paper, we solve a multi-robot informative path planning (MIPP) task under the influence of uncertain communication and adversarial attackers. The goal is to create a multi-robot system that can learn and unify its knowledge of an unknown environment despite the presence of corrupted robots sharing malicious information. We use a Gaussian Process (GP) to model our unknown environment and define informativeness using the metric of mutual information. The objectives of our MIPP task is to maximize the amount of information collected by the team while maximizing the probability of resilience to attack. Unfortunately, these objectives are at odds especially when exploring large environments which necessitates disconnections between robots. As a result, we impose a probabilistic communication constraint that allows robots to meet intermittently and resiliently share information, and then act to maximize collected information during all other times. To solve our problem, we select meeting locations with the highest probability of resilience and use a sequential greedy algorithm to optimize paths for robots to explore. Finally, we show the validity of our results by comparing the learning ability of well-behaving robots applying resilient vs. non-resilient MIPP algorithms.